ULTRASONIC FLOWMETER FUM-1000 Instruction Manual

FUM-1000, Rev. 1, JUN 2016

FLOVEL CO., LTD.

70-6, Bamdwi-gil 42 beon-gil, Paltan-myeon, Hwaseong-si, Gyeonggi-do, KOREA, ZIP 18524 TEL. +82-31-415-9992~4 FAX. +82-31-357-5984 <u>www.flovel.co.kr</u> e-mail : flovel9992@hanmail.net

Important Customer Notice

Thank you for choosing the FUM-1000 Transit-Time Ultrasonic Flow Meter with SLSI CMOS and low-voltage wide-pulse sending technology. This manual contains important information about your meter. Before installing and operating this flow meter, please read this manual carefully and follow its instructions.

- FLOVEL has verified the conformity between the contents in this manual and the hardware and software described. However, errors may still exist. We regularly review the materials covered in this manual and correct errors with revisions. Any suggestions for improvement will be appreciated.
- Go to http://www.flovel.co.kr/ for a most current electronic version of this manual.
- We reserve the right to change the content of this manual without prior notification.
- If you have any questions or problems regarding this manual, please contact FLOVEL Service

FLOVEL Service

TEL. +82-31-415-9994 FAX. +82-31-357-5984

e-mail : flovel9992@hanmail.net

WARNINGS IN THIS MANUAL

Warning, attention, and note statements are used throughout this book to draw your attention to important Information.

WARNING "Warning" statement appears with information that is important to protect people and equipment from damage. Pay very close attention to all warnings that apply to your application. Failure to comply with these instructions may damage the meter and personal injury.
ATTENTION "Attention" statements in this manual indicate that failure to comply with stated instructions may result in damage to the meter or faulty operation of the flow meter.
NOTE "Note" indicates that ignoring the relevant requirements or precautions may result in flowmeter damage or malfunction.

Product Components

An inspection should be made before installing the flow meter. Check to see if the spare parts are in accordance with the packing list. Make sure that there is no damage to the enclosure due to a loose screw or loose wire, or other damage that may have occurred during transportation. Any questions, please contact your representative as soon as possible.

CONTENT

1. Transmitter Installation and Connect5
1.1. Inspection Prior to Transmitter Installation5
1.2 Power Supply Connecting6
1.3. Powering on6
1.4. Keypad Functions7
1.5. Keypad Operation7
1.6. Flowmeter Window Descriptions9
2. Pipe Parameter Entry Shortcuts10
3. Measurement Site Selection12
3.1 Selection of Measurement point12
3.2 Installation of Ultrasonic Flowmeter13
4. Transducer Installation14
4.1. Installing the Transducers14
4.2. Transducer Mounting Inspection16
5. Operating Instructions19
5.1. System Normal Identification format change of entire section19
5.2. Zero Set Calibration19
5.3. Scale Factor20
5.4. System Lock (Unlock)20
5.5. Keypad Lock21
5.6. 4~20mA Current Loop Verification21
5.7. Frequency Output21
5.8. Totalizer Pulse Output22
5.9. Alarm Programming22
5.10. Batch Controller Paragraph format change23
5.11. Analog Output Calibration24
6. Windows Display Explanations25
6.1. Windows Display Codes25
6.2. Display Explanation27
7. Error Diagnoses44
8. Product Overview47
9. Appendix50

1. Transmitter Installation and Connect

1.1. Inspection Prior to Transmitter Installation

You will find a "Position Drawing" in the packing. Please use it as a template in the place that you are going to install the flow meter. Then drill 3 installation holes at the screw position shown on the drawing with the M5 mm aiguilles. (picture)

Instructions:

- 1. Screw M5X10mm 1 ea, M5X20mm 2ea tapping screws through the transmitter enclosure base and attach it to the wall.
- 2. Tighten the screws to secure to the enclosure on the wall.

1.2 Power Supply Connecting

1.2.1. Direct Mount Method

Please double check that power supply you ordered meets your equipment requirements. Factory standard power supply is 90~245 VAC.

Observe the following precautions for installation procedures outlined in this chapter:

- Ensure that power connections are made in accordance with the indications shown on the connection terminals.
- Transmitters can be powered by two different power supplies: 90~245VAC or 10-36VDC

1.2.2. Connecting the Wiring

Once the electronics enclosure has been installed, the flow meter wiring can be connected. Open the case, terminals 11, 12, and 13 can be found at the left lower side. Connect to AC power. Terminal 13 is grounded (earth) while connecting. As per wiring diagram to connect 4-20mA Output (terminals 23, 24), Downstream transducer (terminals 44, 45, 46), Upstream transducer (terminals 41, 42, 43), OCT Output (terminals 28, 29) and Relay Output(terminals 30, 31).

For double-shielded transducer cable: "-" on the black wire, "+" on the red wire and "shield" on the shield.

WARNING

Wire with power off.

Use either AC or DC power supply. Do not connect them both at the same time.

1.3. Powering on

As soon as the flow meter is switched on, the self-diagnosis program will start to run. If any error is detected, an error code will display on the screen (Refer - Error Diagnoses). After that, the system will run automatically according to the last input parameters.

If the installation is accomplished when system is switched on, gain adjustment can be monitored in Window M01. After S1, S2, S3, and S4 are displayed on the upper left corner of the screen, the system will activate the normal measurement condition automatically. It is indicated by code "*R" on

FLOVEL CO.,LTD.

the upper left corner of the screen. The system will default to the last window settings and automatically display them at next power on.

1.4. Keypad Functions

Follow these guidelines when using the flow meter keypad (Refer to Keypad Figure):

And input numbers.
 Backspace or delete characters to the left.

And Return to the last menu or to open the next menu. These buttons act as "UP" and "DN" functions when entering numbers.

Select a menu. Press this key first, input two menu numbers and then enter the selected menu.

For example, To Input a pipe outside diameter, press (I) (I) (I) keys where "11" is the window ID to display the parameter for pipe outside diameter.

1.5. Keypad Operation

With all of the parameters entered, the instrument setup and measurement displays are subdivided or consolidated into more than 100 independent windows. The operator can input parameters, modify settings or display measurement results by "visiting" a specific window. These window are arranged by 2-digit serial numbers (including "UP" sign) from 00~99, then to +0, +1, etc. Each window serial number, or so-called window ID code, has a defined meaning.

For example, Window M11 indicates the parameter input for pipe outside diameter, while Window M25 indicates the mounting spacing between the transducers, etc. (Refer DN Windows Display Explanations).

The keypad shortcut to visit a specific window is to press the digit window ID code. For example, to input or check the pipe outside diameter, just press the (1) (1) keys for window ID code 11.

Another method to visit a particular window is to press (a) (b) and (c) keys to scroll the screen. For example, if the current window ID code is 66, press (c) key to enter Window M65, press the (c) button again to enter Window M64; then, press the (c) key again to enter Window M66.

FLOVEL CO.,LTD.

Example 1: To enter a pipe outside diameter of	
219.234, the procedure is as follows:	Pipe Outer Diameter
Press Menu 1 1 keys to enter Window M11 (the	>219 mm
numerical value displayed currently is a previous	
value). Now press ENT key. The symbol ">" and the	
flashing cursor are displayed at the left end of the	
second line on the Screen. The new value can be	
entered then2 1 9	
Example 2: If the pipe material is "Stainless Steel",	
press keys Menu 1 4 to enter Window M 14 first.	Pipe Material [14
Then press ENT key to modify the options. Now,	>1. Stainless Steel
select the "1. Stainless Steel " option by pressing UP	
and DN keys, and then press ENT key to confirm the	Pipe Material [14
selection. It is possible to press the 5 key to change	>5. PVC
the election and wait until "5. PVC" is displayed on	
the second line of the screen. Then press the ENT	
key to confirm.	

ATTENTION

Generally, press ENT key first if operator wants to enter "modify" condition. If the "modify" is still not possible even after pressing the ENT key, it means that system is locked by a password. To "Unlock" it, select "Unlock" in Window M47 and enter the original password. The keypad will not respond if the keypad is locked. It only can be unlocked by the entering original password. Select keypad lock functions in Window M48.

1.6. Flowmeter Window Descriptions

The Flowmeter has the unique feature of windows processing for all operations.

These windows are assigned as follows:

00~09	Flow Totalizer Display: to display flow rate, positive total, negative total, net total,
	velocity, date & time, analog inputs for present flow, present operation and flow
	results today, etc.
10~29	Initial Parameter Setup: to enter pipe outside diameter, pipe wall thickness, fluid type,
	transducer type, transducer mounting and spacing, etc.
30~38	Flow Units Options: to select the flow unit, totalizer unit, measurement unit, turn
	totalizers on/off and reset totalizes, etc.
40~49	Setup options: Scaling factor, network IDN (Window M46), system lock (Window
	M47) and keypad lock code (Window M48), etc.
50~89	Input and output setup: relay output setup, 4-20mA outputs, flow batch controller,
	LCD backlit option, date and time, low/high output frequency, alarm output, date
	totalizer, etc.
90~95	Diagnoses: Signal strength and signal quality (Window M90), TOM/TOS*100
	(Window M91), flow sound velocity (Window M92), total time and delta time (Window
	M93), Reynolds number and factor (Window M94), Data Interval (Window M95) etc.
+0~+5	Appendix: power on/off time, total working hours, on/off times and a single-accuracy
	function calculator.

ATTENTION

The other windows are for hardware adjustment by the manufacturer.

2. Pipe Parameter Entry Shortcuts

Below is an example of a typical shortcut keypad entry for pipe parameters. For example the parameters in this example are: measuring the diameter of DN125, measuring medium is water, pipe material is PVC, no liner material. This example can be operated as follows:

Step1. Pipe outside diameter: Press Menu 1 1 keys to enter Window M11, and enter the pipe outside diameter, and then press the ENT key.	Pipe Outer Diameter >140	
Step2. Pipe wall thickness Press the DN key to enter Window M12, pipe wall thickness, and press the ENT key.	Pipe Wall Thickness >7.5	
Step3. Pipe material Press the DN key to enter Window M14, press the ENT key, move the UP or DN key to select pipe material, and press the ENT key.	Pipe Material [14 >5. PVC	
Step4. Liner material parameters (including thickness and sound velocity, if needed) Press the DN key to enter Window M16, press the ENT key, move the UP or DN key to select liner material, and press the ENT key.	Linner Material [16 >0. None, No Liner	
Step5. Fluid type Press the DN key to enter Window M20, press the ENT key, move the UP or DN key to select fluid type, press the ENT key.	Fluid Type [20 >0. Water	
Step6. Transducer type (The transmitter is available for various transducer types.) Press the DN key to enter Window M23, press the ENT key, move the UP or DN key to select transducer type, and press the ENT key.	Transducer Type [23 >23. Standard L2	
Step7. Transducer mounting methods Press the DN key to enter Window M24, press the ENT key, move the UP or DN key to select transducer- mounting method, and press the ENT key.	Transducer Mounting >0. V	

Model FUM-1000

Step8. Adjust Transducer spacing Press the DN key to enter Window M25, accurately install the transducer according to the displayed	Transducer Spacing 73.413 mm	
transducer mounting spacing and the selected mounting method (Refer to Installing the Transducers in this		
chapter).		
Step9. Initial Parameter Setups and Save Press the Manu 26 keys to ENT key.	Parameter Setups Entry to SAVE	
Step10. Display measurement result Press the Menu 0 1 keys to enter Window M01 to display measurement result.	Flow 123.456 m3/h *R Vel 3.8764 m/s	

3. Measurement Site Selection

When selecting a measurement site, it is important to select an area where the fluid flow profile is fully developed to guarantee a highly accurate measurement. Use the following guidelines to select a proper measurement installation site:

Choose a section of pipe, which is always full of liquid, such as a vertical pipe with flow in the upward direction or a full horizontal pipe.

3.1 Selection of Measurement point

To selecting the correct measuring point is the most important, precise measurements should be

as follows in order.

- 1) Select the kinds of liquid and fill up liquid at inside of the pipes.
- 2) Choose measurement point at 10D from the upstream and at 5D from downstream. Any valves among the measurement points should not be installed.
- 3) Check the operating temperature of measurement points. (Check the fluid emperature)
- 4) A pump or curve pipe is installed straight pipe on point 30D.
- 5) Considering the state of the pipe wall, install a pipe on point of the clear condition.
- 6) For make it easier to launch ultrasonic, find average point and make contact with the surface of the pipe closely.

3.2 Installation of Ultrasonic Flowmeter (Upstream & Downstream Requirements)

4. Transducer Installation

4.1. Installing the Transducers

Before installing the transducers, clean the pipe surface where the transducers are to be mounted. Remove any rust, scale or loose paint and make a smooth surface. Choose a section of sound conducting pipe for installing the transducers. Apply a wide band of sonic coupling compound down the center of the face of each transducer as well as on the pipe surface, and then attach the transducers to the pipe with the straps provided and tighten them securely.

NOTE

The two transducers should be mounted at the pipe's centerline on horizontal pipes.

Make sure that the transducer mounting direction is parallel with the flow.

During the installation, there should be no air bubbles or particles between the transducer and the pipe wall. On horizontal pipes, the transducers should be mounted in the 3 o'clock and 9 o'clock positions of the pipe section in order to avoid any air bubbles inside the top portion of the pipe. (Refer to Transducer Mounting). If the transducers cannot be mounted horizontally symmetrically due to limitation of the local installation conditions, it may be necessary to mount the transducers at a location where there is a guarantee full pipe condition (the pipe is always full of liquid).

4.1.1. Transducer spacing

After entering the required parameters, the spacing between the ENDS of the two transducers is considered as the standard transducer spacing (Refer to Top View on transducer mounting methods in diagram below). Check the data displayed in Window M25 and space the transducers accordingly.

4.1.2. Transducer Mounting Methods

Four transducer mounting methods are available. They are respectively: V method, Z method, N method, and W method. The V method is primarily used on small diameter pipes (DN100~400mm, 4"~16"). The Z method is used in applications where the V method cannot work due to poor signal or no signal detected. In addition, the Z method generally works better on larger diameter pipes (over DN300mm, 12") or cast iron pipes. The N method is an uncommonly used method as well as

FLOVEL CO.,LTD.

is the W method. They are used on smaller diameter pipes (below DN50mm, 2").

4.1.3. V Method

The V method is considered as the standard method. The V method usually gives a more accurate reading and is used on pipe diameters ranging from 25mm to 400mm ($1\sim16$ ") approximately. Also, it is convenient to use, but still requires proper installation of the transducer, contact on the pipe at the pipe's centerline, and equal spacing on either side of the centerline.

Fig 3. Sensor Installation ("V" Method)

4.1.4. Z Method

The signal transmitted in a Z method installation has less attenuation than a signal transmitted with the V method. This is because the Z method utilizes a directly transmitted (rather than reflected) signal which transverses the liquid only once. The Z method is able to measure on pipe diameters ranging from 100mm to 3000mm (4"~120") approximately. Therefore, we recommend the Z method for pipe diameters over 300mm (12").

4.1.5. N Method (not commonly used)

With the N method, the sound waves traverse the fluid twice and bounce three times off the pipe walls. It is suitable for small pipe diameter measurement. The measurement accuracy can be improved by extending the transit distance with the N method (uncommonly used).

4.1.6. W Method (very rarely used)

As with the N method, the measurement accuracy can also be improved by extending the transit distance with the W method. The sound wave traverses the fluid four times and bounces four times off the pipe walls. It is suitable for very small pipe (diameters less than 50mm, 2").

4.2. Transducer Mounting Inspection

Check to see if the transducer is installed properly and if there is an accurate and strong enough ultrasonic signal to ensure proper operation and high reliability of the transducer. You can confirm that the transducer is installed correctly by checking the detected signal strength, total transit time, and delta time as well as transit time ratio.

The "mounting" condition directly influences the flow value accuracy and system long-time running reliability. In most instances, only apply a wide bead of sonic coupling compound lengthwise on the face of the transducer and stick it to the outside pipe wall to get good measurement results. However, the following inspections still need to be carried out in order to ensure the high reliability of the measurement and long-term operation of the instrument.

4.2.1. Signal Strength Inspection

Signal strength (displayed in Window M90) indicates a detected strength of the signal both from upstream and downstream directions. The relevant signal strength is indicated by numbers from 00.0~99.9. 00.0 represents no signal detected while 99.9 represent maximum signal strength. Normally, the stronger the signal strength detected, the longer the operation of the instrument reliably, as well as the more stable the measurement value obtained.

Adjust the transducer to the best position and check to ensure that enough sonic coupling compound is applied adequately during installation in order to obtain the maximum signal strength. The FUM-1000 system normally requires signal strength over 60.0, which is detected from both upstream and downstream directions. If the signal strength detected is too low, the transducer installation position and the transducer mounting spacing should be re-adjusted and the pipe should be re-inspected. If necessary, change the mounting to the Z method.

4.2.2. Signal Quality (Q value) Inspection

Q value is short for Signal Quality (displayed in Window M90). It indicates the level of the signal detected. Q value is indicated by numbers from 00~99. 00 represents the minimum signal detected while 99 represent the maximum. Normally, the transducer position should be adjusted repeatedly and coupling compound application should be checked frequently until the signal quality detected is as strong as possible.

4.2.3. Total Time and Delta Time Inspection

"Total Time and Delta Time", which displays in Window M93, indicates the condition of the installation. The measurement calculations in the flow meter are based upon these two parameters. Therefore, when "Delta Time" fluctuates widely, the flow and velocities fluctuate accordingly. This means that the signal quality detected is too poor. It may be the results of poor pipe-installation conditions, inadequate transducer installation, or incorrect parameter input. Generally, "Delta Time" fluctuation should be less than±20%. Only when the pipe diameter is too small or velocity is too low can the fluctuation be wider.

4.2.4. Transit Time Ratio

Transit Time Ratio indicates if the transducer mounting spacing is accurate. The normal transit time ratio should be 100±3 if the installation is proper. Check it in Window M91.

	ATTENTION		
	If the transit time ratio is over 100±3, it is necessary to check:		
	Α.	If the parameters (pipe outside diameter, wall thickness, pipe material, liner,	
		etc.) have been entered correctly,	
	В.	If the transducer mounting spacing is accordance with the display in	
		Window M25,	
	C.	If the transducer is mounted at the pipe's centerline on the same diameter,	
	D.	If the scale is too thick or the pipe mounting is distorted in shape, etc.	

	Warni	ngs
NH 11/	Α.	Pipe parameters entered must be accurate; otherwise the flow
		meter will not work properly.
	В.	During the installation, apply enough coupling compounds in
		order to stick the transducer onto pipe wall. While checking the
		signal strength and Q value, move the transducer slowly
		around mounting site until the strongest signal and maximum Q
		value can be obtained. Make sure that larger the pipe diameter,
		the more the transducer should be moved.

C.	Check to be sure the mounting spacing is accordance with the
	display in Window M25 and transducer is mounted at the pipe's
	centerline on the same diameter.
D.	Pay special attention to those pipes that formed by steel rolls
	(pipe with seams), since such always irregular. If the signal
	strength is always displayed as 0.00, that means there is no
	detected. Thus, it is necessary to check that the parameters
	(including all the pipe parameters) been entered accurately.
	Check to be sure the transducer mounting method has been
	selected properly, the pipe is not worn-out, and the liner is not
	too thick. Make sure there is there is indeed fluid pipe or the
	transducer is not very close to a valve or elbow, and there are
	not too many air bubbles the fluid, etc. With the exception of
	these reasons, if there is still no signal detected, the
	measurement site has to be changed.
E.	Make sure that the flowmeter is able to run properly with high
	reliability. The stronger the strength displayed, the higher the Q
	value reached. The longer the flowmeter runs accurately,
	higher the reliability of the flow rates displayed. If there is
	interference from ambient electromagnetic waves or the signal
	detected is too poor, the flow value displayed is not reliable;
	consequently, capability for reliable operation is reduced.
F.	After the installation is complete, power on the instrument and
	check the result accordingly.

5. Operating Instructions

5.1. System Normal Identification format change of entire section

Press the Menu 0 8 keys. If the letter "*R" displays on the screen, it indicates system normal.

If the letter "E" is displayed, it indicates that the current loop output is over ranged by 120%. This refers to the settings in Window M57. Enter a larger value in Window M57, and the letter "E" will disappear. It can be ignored if no current loop output is used.

If the letter "Q" is displayed, it indicates that the frequency output is over ranged by 120%, and this refers to the settings in Window M69. Increase the input value in Window M69, and the letter "Q" will disappear. It can be ignored if no frequency output is used.

If the letter "H" is displayed, it indicates that the ultrasonic signal detected is poor. For more information, please refer to "Error Diagnoses".

If the letter "G" is displayed, it indicates that system is adjusting the signal gain prior to the measurement. Also, it means system normal. Only when the adjustment takes too long without stopping, can system be identified as abnormal.

Letter "I" indicates no signal is being detected. Check the transducer wiring connections are correct, the transducers are installed firmly, etc.

Letter "J" indicates a hardware defect exists. Normally, such defect is temporary; it could be eliminated by system reboot (power off and restart). For further information, please refer to "Error Diagnoses".

5.2. Zero Set Calibration

Once zero flow occurs, a zero point may indicate on each measuring instrument, i.e. as the measurement value reaches zero flow, it is indicated as zero. It is necessary to establish the true zero flow condition and program that set point into the instrument.

If the zero set point is not at true zero flow, a measurement difference may occur. The smaller the physical measurement capacity is, the larger the measurement difference from the zero point will exist. Only when zero point is reduced to a definite degree, as compared with the physical measurement capacity, can the measuring difference from zero point be ignored.

NOTE

For an ultrasonic flow meter, the measurement difference from zero point cannot be ignored at low flow. It is necessary to perform a zero set calibration to improve low flow measurement accuracy.

5.3. Scale Factor

Scale factor refers to the ratio between "actual value" and "reading value". For example, when the measurement is 2.00, and it is indicated as 1.98 on the instrument, the scale factor reading is 2/1.98. This means that the best scale factor constant is 1. However, it is difficult to keep the scale factor as "1" on the instrument especially in batch control operations. The difference is called "consistency". High quality products always require high consistency. The scale factor default is "1" for each instrument prior to shipment from the factory. The reason setting the scale factor default is that the scale factors in the flow meter are only limited by two parameters: the crystal oscillation frequency and the transducer. It has no relation to any circuit parameters.

During operation, there still exists possible difference in pipe parameters, etc. The "scale factor" may be necessary when used on different pipes. Thus, scale factor calibration is specially designed for calibrating the differences that result from application on different pipes. The scale factor entered must be one that results from actual calibration.

5.4. System Lock (Unlock)

System lock is readable but unable to prevent operation error due to unauthorized tampering by unauthorized personnel.

Press the Menu 4 7 ENT keys, move / + or / - key to select "Lock", press the ENT key, enter a 1~4 numerically long password, and then press the ENT key to confirm.

Unlock using the selected password only. Press Menu 4 7 ENT , move / + or / - to select "Unlock", press ENT , enter the correct password, then press ENT to confirm.

ATTENTION

Keep the password in mind or recorded in a safe place or the instrument cannot be used.

5.5. Keypad Lock

The keypad can be locked to prevent unauthorized use of your flow meter. Unlock it using the correct password only.

To lock it, first enter desired window, then press Menu 4 8 press ENT to enter a 1~8 numerically long password, and then it will return to the locked window automatically. For example, if Window M01 is required to display in the locked condition, enter Window M01 first (if already in this window, skip this step), press Menu 4 8, press ENT to enter a password such as "1111", press ENT again to return to the locked Window M01 automatically. The keypad is "invalidated" now. Unlock it by entering the password "1111" again.

5.6. 4~20mA Current Loop Verification

Possessing a current loop output exceeding an accuracy of 0.1%, the flow meter is programmable and configurable with multiple output modules such as 4 ~20mA or 0~20mA. Select in Window M55. For details, please refer to "Windows Display Explanations".

In Window M56, enter a 4mA flow value. Enter the 20mA flow value in Window M57. For example, if the flow range in a specific pipe is 0~1000m3/h, enter 0 in Window M56 and 1000 in Window M57. If the flow ranges from -1000~0~2000m3/h, configure the 20~4~20mA module by selecting Window M55 when flow direction is not an issue. Enter 1000 in Window M56 and 2000 in Window M57. When flow direction is an issue, module 0~4~20mA is available. When the flow direction displays as negative, the current output is in range of 0~4mA, whereas the 4~20mA is for the positive direction. The output module options are displayed in Window M55. Enter "-1000" in Window M56 and 2000 in Window M56

Calibrating and testing the current loop is performed in Window M58. Complete the steps as follows: Press Menu 5 8 ENT, move UP or DN display "0mA", "4mA", "8mA", "16mA", "20mA" readings, connect an ammeter to test the current loop output and calculate the difference. Calibrate it if the difference is within tolerance. If not, how to calibrate the current loop is to be found in *Section 5.11* in this chapter.

Check the present current loop output in Window M59 as it changes along with change in flow.

5.7. Frequency Output

The flow meter is provided with a frequency output transmitter function. The high or low frequency output displayed indicates the high or low flow rate reading. The user can reset the frequency output as well as flow rate per his requirements For example: if a pipe flow range is 0~3000m3/h, the relative frequency output required is 123~1000Hz, and the configuration is as follows:

In Window M68 (low limit frequency output flow value), input 0;

In Window M69 (high limit frequency output flow value), input 3000;

In Window M67 (low limit frequency), input 123

There is no output circuit specially assigned to frequency output. It only can be transmitted through OCT, i.e. select Window M78 (item "09. POS Int Pulse").

5.8. Totalizer Pulse Output

Each time the flowmeter reaches a unit flow, it may generate a totalizer pulse output to a remote counter. To configure the unit flow, please refer to Windows M32 and M33.

The totalizer pulse output can be transmitted through OCT or a relay. So, it is necessary to configure OCT and the relay accordingly. (Please refer to Window M78 and M79).

For example, if it is necessary to transmit the positive totalizer pulse through a relay, and each pulse represents a flow of 0.1m3, ; the configuration is as follows:

In Window M33, select totalizer the flow unit "Cubic Meters (m3)";

In Window M34, select the scale factor "x0.1";

In Window M79, select "9. Positive totalizer pulse output"

ATTENTION

Make sure to select a suitable totalizer pulse, since the output may be extended if it is too large. If it is too small, the relay may activate too frequently and may probably shorten its life. Furthermore, if it operates too fast, it may generate a pulse loss error. Therefore, a rate of 1~60/minute is recommended.

5.9. Alarm Programming

The flow meter has two programmable alarms: audible alarm and on off output alarm. The audible alarm generates an internal beeper. Select the BEEPER trigger in Window M77. The on-off output alarm is generated through OCT or transmission to an external circuit by opening or closing a relay. The on-off output signal is activated under the following conditions:

- (1) Signal not detected
- (2) Poor signal detected
- (3) The flow meter is not ready for normal measurement
- (4) The flow is in the reverse direction (back flow)
- (5) The analog outputs exceed span by 120%
- (6) The frequency output exceeds span by 120%

(7) The flow rate exceeds the ranges configured (Configure the flow ranges using the software alarm system. There are two software alarms: Alarm#1 and Alarm #2. The lower limit value for

FLOVEL CO.,LTD.

Alarm#1 is configured in Window M73, and the upper limit value is configured in Window M74. As for Alarm#2, the lower limit value is in M75 and the upper one is in Window M76).

Example 1: To program audible alarm, activated when the flow meter is not ready for normal measurement:

Select item 2 in Window M77: "2. NO*R".

Example 2: To program the relay output alarm, activated when flow rate exceeds 300~1000m3/h:

- (1) In Window M73, input 300
- (2) In Window M74, input 1000
- (3) In Window M79, select item 6: "6. Alarm #1 limit exceed"

Example 3: To program OCT output alarm signal, activated when flow rate exceeds 100~500m3/h; relay output alarm signal activated when flow rate exceeds 600~1000m3/h:

- (1) In Window M73, input 100
- (2) In Window M74, input 500
- (3) In Window M75, input 600
- (4) In Window M76, input 1000
- (5) In Window M78, select item 6: "6. Alarm #1"
- (6) In Window M79, select item 7: "7. Alarm #2"

5.10. Batch Controller Paragraph format change

The batch controller is able to perform flow quantity control, or the batching of specific volumes to control events in product production or chemical dosing, etc. The internal batch controller in the flow meter is able to take the high or low end of analog input signals as an input, or through the keypad, to perform control functions. The output can be transmitted through OCT or a relay.

When taking analog inputs as control signals, input an analog output which is over 2mA through the analog input terminal to indicate the condition of "1"; current "0" indicates the condition of "0". In Window M78(OCT output), M79(relay output) or M80(Flow Batch CTRL), select Item 8 "Batch controller" and the OCT or relay output will generate output signals. Enter the batch value in Window M81. Start the batch controller after that. For details, please refer to "Windows Display Explanations".

5.11. Analog Output Calibration

The hardware detect window must be activated prior to calibration. The procedure is as follows:

- 1. Press Menu DN 0 ENT enter password "4213068", then press ENT to activate the detect menu. With no effect to next power on, this window will close automatically as soon as the power is turned off.
- Press Menu DN 0 ENT to calibrate the current loop 4mA output. Use an ammeter to measure the current loop output current. At the same time, move UP or DN to adjust the displayed numbers. Watch the ammeter until it reads 4.00. Stop at this point, the 4mA has been calibrated.
- 3. Then, press ENT to calibrate the current loop 20mA output. The method is as same as in 4mA calibration.
- 4. The result is saved in EEPROM(MENU 26). Switch off the power supply has not lost.

ATTENTION

Each flow meter has been calibrated strictly before leaving factory. It is unnecessary to carry through this step except when the current value (detected while calibrating the current loop) displayed in Window M58 is not identical with the actual output current value.

6. Windows Display Explanations

6.1. Windows Display Codes

Flow Totalizer Display		
00	Flow Rate/Net Totalizer	
01	Flow Rate/Velocity	
02	Flow Rate/POS Totalizer	
03	Flow Rate/NEG Totalizer	
04	Date Time/Flow Rate	
05	Instantaneous Caloric/Totalized Caloric	
06	Analog Input AI1, AI2	
08	System Error Codes	
09	Net Flow Today	
Initial	Parameter setup	
10	10 Pipe Outer Perimeter	
11	Pipe Outer Diameter	
12	Pipe Wall Thickness	
13	Pipe Inner Diameter	
14	Pipe Material	
15	Pipe Sound Velocity	
16	Liner Material	
17	Liner Sound Velocity	
18	Liner Thickness	
20	Fluid Type	
21	Fluid Sound Velocity	
22	Fluid Viscosity	
23	Transducer Type	
24	Transducer Mounting	
25	Transducer Spacing	
26	Parameter Setups	
27	Cross-sectional Area	
28	Holding with Poor Sig	
29	Empty Pipe Setup	
Flow Units Options		
30	Metric and English	
31	Flow Rate Unit Selection	
32	Totalize Units	

33	Total Multiplier
34	NET Totalizer
35	Positive Totalizer
36	Negative Totalizer
37	Totalize Reset
38	Manual Totalizer
Setup	Options
40	Damping Coefficient
41	Low Flow Cutoff
42	Static Set Zero
43	Reset Static Zero
44	Manual Zero Point Setup
45	Scale Factor
46	Network IDN
47	System Lock Code
48	Entry to Calibration Data
Input a	and Output setup
55	Current Output Selection
56	4mA or 0mA Output Value
57	20 mA Output Value
58	Current Loop Check up
59	Current Loop Output value
60	Date and Time Setup
61	Software Version
63	Select Comm Protocol
67	Frequency Output signal Frequency Range
68	Flow Value of Low Frequency Output
69	Flow Value of High Frequency Output
70	LCD Backlight Controller
71	LCD Contrast Controller
72	Working Timer
73	Alarm #1 Low Value Set
74	Alarm #1 High Value Set
75	Alarm #2 Low Value Set

76	Alarm #2 High Value Set
77	Buzzer Setup
78	OCT Output Setup
79	RELAY Output Setup
80	Batch Trigger Select
81	Flow Batch Controller
82	Date Totalizer
83	Automatic Amending
Diagnostics menu	
90	Strength & Quality of Signal
91	Ratio of Transfer time
92	Fluid Sound Velocity
93	Total Time and Delta Time
94	Reynolds Number

Appendix+0Power ON/OFF Time+1Total Working Hours+2Last Power OFF Time+3Last Flow Rate+4ON/OFF Times+5Calculator+6Media Vel. Threshold+7Total Flow for Month+8Total Flow This Year+9No-Ready Timer-0Hardware Adjusting		
+0Power ON/OFF Time+1Total Working Hours+2Last Power OFF Time+3Last Flow Rate+4ON/OFF Times+5Calculator+6Media Vel. Threshold+7Total Flow for Month+8Total Flow This Year+9No-Ready Timer-0Hardware Adjusting	Appen	dix
+1Total Working Hours+2Last Power OFF Time+3Last Flow Rate+4ON/OFF Times+5Calculator+6Media Vel. Threshold+7Total Flow for Month+8Total Flow This Year+9No-Ready Timer-0Hardware Adjusting	+0	Power ON/OFF Time
+2Last Power OFF Time+3Last Flow Rate+4ON/OFF Times+5Calculator+6Media Vel. Threshold+7Total Flow for Month+8Total Flow This Year+9No-Ready Timer-0Hardware Adjusting	+1	Total Working Hours
+3Last Flow Rate+4ON/OFF Times+5Calculator+6Media Vel. Threshold+7Total Flow for Month+8Total Flow This Year+9No-Ready Timer-0Hardware Adjusting	+2	Last Power OFF Time
+4ON/OFF Times+5Calculator+6Media Vel. Threshold+7Total Flow for Month+8Total Flow This Year+9No-Ready Timer-0Hardware Adjusting	+3	Last Flow Rate
+5Calculator+6Media Vel. Threshold+7Total Flow for Month+8Total Flow This Year+9No-Ready Timer-0Hardware Adjusting	+4	ON/OFF Times
 +6 Media Vel. Threshold +7 Total Flow for Month +8 Total Flow This Year +9 No-Ready Timer -0 Hardware Adjusting 	+5	Calculator
+7Total Flow for Month+8Total Flow This Year+9No-Ready Timer-0Hardware Adjusting	+6	Media Vel. Threshold
+8Total Flow This Year+9No-Ready Timer-0Hardware Adjusting	+7	Total Flow for Month
+9No-Ready Timer-0Hardware Adjusting	+8	Total Flow This Year
-0 Hardware Adjusting	+9	No-Ready Timer
	-0	Hardware Adjusting

6.2. Display Explanation

While reading this section, please compare it with the instrument in order to improve your understanding.

Menu 0 0		
Flow Rate / Net Totalizer	Flow 123.4567 m3/n *R	
Display flow rate and net totalizer.	NET +123 x 1 m3	
If the net totalizer has been turned off (refer to M34),		
the net totalizer value displayed is the total prior to its		
turn off.		
Menu 0 1		
Flow Rate / Velocity	Flow 123.4567 m3/h *R	
Display flow rate and velocity.	POS +123 x 1 m3	
		1
Menu 0 2		
Flow Rate / Positive Totalizer	Flow 123.4567 m3/h *R	
Display flow rate and positive totalizer. Select the	NEG 0 x 1 m3	
positive totalizer units in Window M31. If the positive		'
totalizer has been turned off, the positive totalizer		
value displayed is the total prior to its turn off.		
Menu 0 3		
Flow Rate / Negative Totalizer	Flow 123.4567 m3/n *R	
Display flow rate and negative totalizer. Select the	NET 123 x 1m3	
negative totalizer value in Window M31. If the negative		
totalizer has been turned off (refer to M36), the value		
displayed is the total prior to turn off.		
Menu 0 4		
Date Time / Flow Rate	13-07-01 09:04:15 *R	
Display the current date time and flow rate.	Flow 23.4567 m3/h	
The time setting method is found in Window M60.		1
Menu 0 5		
Caloric / Totalized Caloric	EFR 123.4567 GJ/h *R	
Display Instantaneous Caloric and Totalized Caloric.	E.I OE+O GJ	
Menu 0 6		
Analog Input Value	11= 37.123C, 114.46	
Display Analog Input AI1, AI2 current value and	12= 37.123C, 114.46	
corresponding temperature value.		

Menu 0 8	
System Error Codes	*R
Display the working condition and the system error	System Normal
codes. More than one error code can occur at the	
same time.	
The explanations of error codes and detailed	
resolution methods	
Menu 0 9	
Net Flow Today	Net Flow Today [09
Display net total flow today.	23 m3
Menu 1 0	Rine Outer Parimeter
Pipe Outer Perimeter	All 104 mm
Enter the pipe outer perimeter. If the diameter of	439.194 mm
the know, enter it in window M11.	
Menu 1 1	
Pipe Outer Diameter	Pipe Outer Diameter
Enter the pipe outside diameter, The pipe outside	139.8 mm
diameter must range from 10mm to 6000mm.	
Menu 1 2	
Pipe Wall Thickness	
Enter the pipe wall thickness. If the pipe inside	7.5 mm
diameter is already known, skip this window and enter	
it in Window M13.	
Menu 1 3	Ding Inner Diameter
Pipe Inner Diameter	
Enter the pipe inside diameter. If the pipe outside	124.6 11111
diameter and pipe wall thickness has been entered,	
press DN to skip this window.	
Note: Enter either pipe wall thickness or pipe inside	
diameter.	

Menu 1 4		Dine Material	[14
Pipe Material			[14
Enter pipe material. Th	e following options are	J. PVC	
available (by UP,DN button	s or numerical keys):		
0. Carbon Steel	1. Stainless Steel		
2. Cast Iron	3. Ductile Iron		
4. Copper	5. PVC		
6. Aluminum	7. Asbestos		
8. Fiber Glass-Epoxy	9. Other		
Refer to item 9 "Other"; it is materials, which are not inc items. Once item 9 is so sound velocity must be enter	possible to enter other luded in previous eight elected, the relevant pipe ered in Window M15.		
Menu 1 5			
Pipe Sound Velocity		Pipe Sound Velocity	
Enter pipe sound velocity. Th	is function is only used when	3604 m/s	
item 9 "Other" is selected in W	/indow M14. At the same time,		
this window cannot be vis	sited. System will calculate		
automatically according to the	existing parameters.		
Menu 1 6			
Select the Liner Material			[16
The following options are avail	able:	0. None, No Liner	
0. None ,No Liner	1. Tar Epoxy		
2. Rubber	3. Mortar		
4. Polypropylene	5. Polystryol		
6. Polystyrene	7. Polyester		
8. Polyethylene	9. Ebonite		
10. Teflon	11. Other		
Item 11 "Other" is available to enter other materials that are			
not included in previous ten items. Once the "Other" is			
selected, the relevant liner sound velocity must be entered in			
Window M17.			

Model FUM-1000

Menu 1 7					
Liner Sound Velocity		Liner	Sound Veloc	ity	
Enter liner sound velocity. It only can be visited when item			2505	m/s	
" Other" in Window M16 is selected.					
Menu 1 8					
Liner Thickness		Liner	Thickness		[18
Enter liner thickness. It only o	can be visited when a definite		10 mm		
liner is selected in Window M1	6.				
Menu 2 0			_		
Select Fluid Type		Fluid	lype	IS .	[20
The following options are avail	lable:	0.	Water (Gene	eral)	
0. Water	1. Sea Water				
2. Kerosene	3. Gasoline				
4. Fuel Oil	5. Crude Oil				
6. Propane (-45C)	7. Butane (0C)				
8. Other Liquid	9. Diesel Oil				
10. Castor Oil	11. Peanut Oil				
12. Gasoline #90	13. Gasoline #93				
14. Alcohol	15. Water (125C)				
"Other" refers to any fluid. Th	e relevant sound velocity must				
be entered in Window M21.					
Menu 2 1					
Fluid Sound Velocity		Fluid	Sound Veloc	ity	
Enter the fluid sound velocity.	It only can be used when item		2720	m/s	
"Other" is selected in Window	M20, i.e. it is unnecessary to				
enter all the fluids listed in Win	ndow M20.				
Menu 2 2					
Fluid Viscosity		Fluid	Viscosity		[22
Enter fluid's kinematics viscosity. It only can be used when			1.0038	cST	
item "Other" is selected in Window M20, i.e. it is					
unnecessary to enter all the fluids that listed in Window M20.					

Menu 2 3		Transform Trans	122
Select transducer type. Please select "0.Standard".		Iransducer Type	[23
0. Standard-M	1. Insertion Type C	\geq 23. Clamp-On L2	
2. Standard-S	3. User Type		
4. Standard-B	5. Insertion B(45)		
6. Standard-L	7. JH-Polysonics		
8. Standard-HS	9. Standard-HM		
10. Standard-M1	11. Standard-S1		
12. Standard-L1	13. PI-Type		
14. FS410(FUJI)	15. FS510(FUJI)		
16. Clamp-On TM-1	17. Insertion TC-1		
18. Clamp-On TS-1	19. Clamp-On TS-2		
20. Clamp-On TL-1	21. Insertion TLC-2		
22. Clamp-On M2	23. Clamp-On L2		
Menu 2 4			
Transducer Mounting		Transducer Mounting	
Four mounting methods are av	vailable:	0. V	
0. V (sound wave bounce	es 2 times)		
1. Z(sound wave bounce	s once. The most commonly		
use method)			
2. N (small pipe, sound wa	ave bounces 3 times.)		
3. W (small pipe, sound w	ave bounces 4times.)		
Menu 2 5			
Transducer Spacing (this value is Calculated by the flow		Iransducer Spacing	
meter) The operator must mou	unt the transducer according to	281.871 mm	
the transducer spacing dis	splayed (be sure that the		
transducer spacing must be measured precisely during			
installation). The system will	display the data automatically		
after the pipe parameter had b	een entered.		
Menu 2 6		Default Settings	126
Parameters' Save & Load		> 1 Solidify Setting	
Several types piping and spec	ifications can be input.		
This method doesn't input sev	rere piping separately, and can		
0. Use RAM Setting	เกษลอนเซน.		
1. Solidify Setting			

Menu 2 7	
The area of current fluid in pipe interior is represented.	Save/Load Parameters
0. 15mm, PI-Type	0 : 15mm, PI-Type
1. 110mm, V, PVC	
2. 12.83mm, PI-Type	
 219mm, Z, Carbon St 259mm, Z, Carbon St 325mm, V, PVC 80mm, V, Carbon Ste 25mm, V, Stainless 400mm, V, PVC 	
Menu 2 8	Hold On Poor Signal
Holding with Poor Sig	
Select "Yes" to hold last good flow signal displayed if the	YES
flow meter experiences a poor signal condition.	
This function will allow continued data calculation without	
interruption.	
Menu 2 9	Franki Ding Cature 199
Empty Pipe Setup	Empty Pipe Setup [29
This value is used to solve problem of empty pipe.	39
When pipe is empty, flowmeter shows transmission signal as	
"normal working" in pipe wall.	
This function is for protect against the action of flowmeter,	
For the protection, enter $30 \sim 40$ in window	
Menu 3 0	
Measurement Units Options	Measurement Units In
Select the measurement unit as follows:	0. Metric
0. Metric	
1. English	
Factory default is metric.	
Menu 3 1	
Flow Rate Units Options	Flow : Unit/Time
The following flow rates units are available:	>Cubic Meter (m3)
0. Cubic Meters (m3)	
1. Liters (I)	Cubic Mater (m2)
2. USA Gallons (Gal)	
3. UK Gallons (IGL)	≥ /nour
4 Million LIS Gallons (mg)	
5 Cubic Feet (cf)	Flow Rate Unit [31
6 USA Oil Parrola (OP)	m3/h
	1

The following time units are available:		
/ Day / Hour / Min / Sec		
Factory default is Cubic Meters/hour		
Menu 3 2		1
Totalizer Units Options		
Select totalizer units. The available unit options are as same	>Cubic Meter (m3)	
as those found in Window M31. The user can select units as		
their required. Factory default is Cubic Meters.		
Menu 3 3		1
Totalizer Multiplier Options		
The totalizer multiplier acts as the function to increase the	3. xl	
totalizer indicating range. Meanwhile, the totalizer multiplier		
can be applied to the positive totalizer, negative totalizer and		
net totalizer at the same time.		
The following options are available:		
0. X0.001(1E-3) 1. X0.01		
2. X0.1 3. X1		
4. X10 5. X100		
6. X1000 7. X10000(1E+4)		
Factory default factor is x1		
Menu 3 4		
Menu 3 4 ON/OFF Net Totalizer	NET Totalizer [34	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF"	NET Totalizer [34 ON	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF" indicates it is turned off. When it is turned off, the net	NET Totalizer [34 ON	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF" indicates it is turned off. When it is turned off, the net totalizer displays in Window M00 will not change. Factory	NET Totalizer [34 ON	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF" indicates it is turned off. When it is turned off, the net totalizer displays in Window M00 will not change. Factory default is "ON".	NET Totalizer [34 ON	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF" indicates it is turned off. When it is turned off, the net totalizer displays in Window M00 will not change. Factory default is "ON". Menu 3 5	NET Totalizer [34 ON	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF" indicates it is turned off. When it is turned off, the net totalizer displays in Window M00 will not change. Factory default is "ON". Menu 3 5 ON/OFF POS Totalizer	NET Totalizer [34 ON POS Totalizer [35	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF" indicates it is turned off. When it is turned off, the net totalizer displays in Window M00 will not change. Factory default is "ON". Menu 3 5 ON/OFF POS Totalizer On/off positive totalizer. "ON" indicates the flowmeter starts	NET Totalizer [34 ON POS Totalizer [35 ON	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF" indicates it is turned off. When it is turned off, the net totalizer displays in Window M00 will not change. Factory default is "ON". Menu 3 5 ON/OFF POS Totalizer On/off positive totalizer. "ON" indicates the flowmeter starts to totalize the value. When it is turned off, the positive	NET Totalizer [34 ON POS Totalizer [35 ON	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF" indicates it is turned off. When it is turned off, the net totalizer displays in Window M00 will not change. Factory default is "ON". Menu 3 5 ON/OFF POS Totalizer On/off positive totalizer. "ON" indicates the flowmeter starts to totalize the value. When it is turned off, the positive totalizer displays in Window M02. Factory default is "ON".	NET Totalizer [34 ON [35 ON [35	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF" indicates it is turned off. When it is turned off, the net totalizer displays in Window M00 will not change. Factory default is "ON". Menu 3 5 ON/OFF POS Totalizer On/off positive totalizer. "ON" indicates the flowmeter starts to totalize the value. When it is turned off, the positive totalizer displays in Window M02. Factory default is "ON". Menu 3 6	NET Totalizer [34 ON POS Totalizer [35 ON	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF" indicates it is turned off. When it is turned off, the net totalizer displays in Window M00 will not change. Factory default is "ON". Menu 3 5 ON/OFF POS Totalizer On/off positive totalizer. "ON" indicates the flowmeter starts to totalize the value. When it is turned off, the positive totalizer displays in Window M02. Factory default is "ON". Menu 3 6 ON/OFF NEG Totalizer	NET Totalizer [34 ON POS Totalizer [35 ON NEG Totalizer [36	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF" indicates it is turned off. When it is turned off, the net totalizer displays in Window M00 will not change. Factory default is "ON". Menu 3 5 ON/OFF POS Totalizer On/off positive totalizer. "ON" indicates the flowmeter starts to totalize the value. When it is turned off, the positive totalizer displays in Window M02. Factory default is "ON". Menu 3 6 ON/OFF NEG Totalizer ON/OFF negative totalizer. "ON" indicates the totalizer is	NET Totalizer [34 ON [35 ON [35 ON [36 ON [36	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF" indicates it is turned off. When it is turned off, the net totalizer displays in Window M00 will not change. Factory default is "ON". Menu 3 5 ON/OFF POS Totalizer On/off positive totalizer. "ON" indicates the flowmeter starts to totalize the value. When it is turned off, the positive totalizer displays in Window M02. Factory default is "ON". Menu 3 6 ON/OFF NEG Totalizer ON/OFF negative totalizer. "ON" indicates the totalizer is turned on. When it is turned off, the negative totalizer	NET Totalizer [34 ON [35 ON [35 ON [36 ON [36]	
Menu 3 4 ON/OFF Net Totalizer "ON" indicates the totalizer is turned on, while "OFF" indicates it is turned off. When it is turned off, the net totalizer displays in Window M00 will not change. Factory default is "ON". Menu 3 5 ON/OFF POS Totalizer On/off positive totalizer. "ON" indicates the flowmeter starts to totalize the value. When it is turned off, the positive totalizer displays in Window M02. Factory default is "ON". Menu 3 6 ON/OFF NEG Totalizer ON/OFF negative totalizer. "ON" indicates the totalizer is turned on. When it is turned off, the negative totalizer displays in Window M03. Factory default is "ON".	NET Totalizer [34 ON [35 ON [35 ON [36 ON [36]	

Menu 3 7	Totalizer Decet2
Totalizer Reset	Colortion
Totalizer reset will make all parameters are reset.	Selection
Press ENT ; move UP or DN arrow to select "YES" or "NO".	
After "YES" is selected, the following options are available:	
None, All, NET, POS, NEG If it is necessary to recover the	
factory default, press keys after the above-mentioned	
characters are displayed on the screen. Generally, it is	
unnecessary to activate this function except during the initial	
installation.	
Menu 3 8	
Manual Totalizer	Manual Iotalizer [38
The manual totalizer is a separate totalizer. Press ENT to	Press ENT When Ready
start, and press ENT to stop it. It is used for flow	
measurement and calculation.	
Menu 4 0	
The damping function will stabilize the flow display.	Damping [40
Essentially, it is a part of the signal filter. Enter a coefficient.	3 sec
Increasing the coefficient increases the stability. However,	
the measurement displayed may be slightly delayed due to	
over damping. Logging too long may result in no response to	
real-time fluctuation, especially when flow rate fluctuates	
wildly. Therefore, damping should be kept at a minimum and	
increased just enough to reduce the fluctuation to an	
acceptable degree by 3 to 10 seconds. indicates no	
damping; 999 indicate the maximum damping. Usually a	
damping factor of 3 to 10 is recommend in applications.	
Menu 4 1	
Low Flow Cutoff Value	Low Flow Cutoff Val.
If the flow rate falls below the low flow cutoff value, the flow	0.03 m/s
indication is driven to zero. This function can prevent the	
flow meter from reading flow after a pump as shut down but	
there is still liquid movement in the pipe, which will result in	
totalization error. Generally, 0.03m/s is recommended to	
enter as the low flow cutoff point. The low flow cutoff value	
has no relation to the measurement results once the velocity	
increases over the low flow cutoff value	

Menu 4 2 Set Zero When fluid is in the static state, the displayed value is called "Zero Point". When "Zero Point' is not at zero in the flow meter, the difference is going to be added into the actual flow values and measurement differences will occur in the flow meter. Set zero must be carried out after the transducers are installed and the flow inside the pipe is in the absolute static state (no liquid movement in the pipe). Thus, the "Zero Point" resulting from different pipe mounting locations and parameters can be eliminated. The measuring accuracy at low flow is enhanced by doing this and flow offset is eliminated. Press ENT , wait for the processing	Set Zero Press ENT to go	[42	
instructions at the bottom right corner to reach 0. Performing Set zero with existing flow may cause the flow to be displayed as "0". If so, it can be recovered via Window M43. Menu 4 3 Reset Zero Select "YES"; reset "Zero Point" which was set by the user.	Reset Zero NO	[43	
Menu 4 4 Manual Zero Point This method is not commonly used. It is only suitable for experienced operators to set zero under conditions when it is not preferable to use other methods. Enter the value manually to add to the measured value to obtain the actual value. For example: Actual measured value =250 m3/h Value Deviation =-10 m3/h Flowmeter Display =240 m3/h Normally, set the value as "0".	Manual Zero Point 0 m3/h	[44	
Menu 4 5 Scale Factor The scale factor is used to modify the measurement results. The user can enter a numerical value other than "1" according to calibration results.	Scale Factor 1.034	[45	

Menu 4 6	
Network IDN	Network IDN [46
Input system identifying code, these numbers can be	1
selected from 0 \sim 65535 except that 13 (0DH ENTER), 10	
(0AH Newline), 42 (2AH \ast) and 38 (26H&) are reserved.	
System IDN is used to identify the flow meter to a network.	
Menu 4 7	Custom Lock
System Lock	System Lock [47
Lock the instrument.	
Once the system is locked, any modification to the system is	
prohibited, but the parameter is readable.	
"Unlock" using your designated password. The password is	
composed of 1 to 4 numbers.	
Menu 54	
OCT Pulse Width	100.422 mc
Max. 500 mS	199.432 mS
Menu 5 5	CL Mada Salast
Current Loop Mode Select	
Select the current loop mode. The following options are	0. 4 – 20 MA
available:	
0. 4-20 mA 5. 0-4-20 mA	
1. 0-20 mA 6. 20-0-20 mA	
2. 0-20mA Via RS232 7. 4-20mA vs, Vel.	
4. 20-4-20 mA	
Menu 5 6	
CL 4mA or 0mA Output Value	CL 4mA Output Value
Set the CL output value according to the flow value at 4mA	0 m3/h
or 0MA.(4mA or 0mA are determined by the settings in	
Window M56). The flow unit's options are as same as those	
in Window M31. Once "velocity 4-20mA"is selected in	
Window M56, the unit should be set as m/s.	
Menu 5 7	
20mA Output Value	CL 20mA Output Value
	300 m3/h
Set the CL output value according to the flow value at 20mA.	

Menu 5 8		
CL Check Verification	CL Checkup (mA) [58	
Check if the current loop has been calibrated before leaving	Press ENT When Ready	
the factory. Press ENT move UP or DN separately to display		
0mA, 4mA till 24mA, and at the same time, check with an	CL Checkup (mA) [58	
ammeter to verify that CL output terminals M31 and 32	▶ 4	
agree with the displayed values. It is necessary to re-		
calibrate the CL if over the permitted tolerance. For more		
information, refer to "Analog Outputs Calibration".		
"0", "4", "8", "12", "16", "20" mA		
Menu 5 9		
CL Current Output	CL Current Output [59	
Display CL current output. The display of 10.0000mA	4.000 mA	
indicates that CL current output value is 10.0000mA.		
If the difference between displaying value and CL output		
value is too large, the current loop then needs to be re-		
calibrated accordingly.		
Menu 6 0		
Date and Time Settings	YY-MM-DD HH:MM:SS	
Generally, it is unnecessary to modify date time as the	13-06-22 12:06:40	
system is provided with a highly reliable perpetual calendar		
chip. The format for setting time setting is 24 hours.		
Press ENT , wait until ">" appears, the modification can be		
made.		
Menu 6 1		
ESN	FUM-1000 Ver18.42	
Display electronic Model and serial number (ESN) of the	S/N=18217291	
instrument. This ESN is the only one assigned to each		
flowmeter ready to leave the factory. The factory uses it for		
files setup and for management by the user.		
Menu 6 2		
COM Setup	RS-485/RS-232 Setup	
COM Setup is the window used to set serial port; the Serial	9600, None, 8,1	
port for communications and other equipment.		
Its connection with the equipment of its serial port set of		
parameters must match. Window the first choice of data that		
baud rate, 9600,19200,38400,56000,57600,115200 choice.		
The second option that in check, None.		

Data length fixed to eight;				
Stop bit for a fixed length;				
Factory serial port parameters for the default				
"9600, 8, None, 1".				
Menu 6 3	Select Comm Protocol			
Select Comm Protocol				
MODBUS ASCII+TDS7				
MODBUS RTU Only				
Menu 6 7				
Set FO Frequency Range	FO Frequency Range			
Set up low FO Frequency and high FO frequency range. It	0 -> 1000 Hz			
must be higher than the low FO frequency. Ranges from 1-				
999Hz. Factory default is 1000Hz.				
NOTE: The frequency output is transmitted through OCT				
Serial Port; therefore the OCT must be set to the frequency				
output mode.				
Menu 6 8				
Low FO Flow Rate	Low FO Flow Rate [68			
Set up low EO flow rate is the corresponding flow value	0 m3/h			
Set up low FO llow rate, i.e. the corresponding llow value				
when output signal frequency is at the lowest FO frequency.				
when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO				
when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz,				
when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz, then the low flow at this moment measured by the flow meter				
when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz, then the low flow at this moment measured by the flow meter is 100m3/h.				
when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz, then the low flow at this moment measured by the flow meter is 100m3/h.				
when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz, then the low flow at this moment measured by the flow meter is 100m3/h.				
when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz, then the low flow at this moment measured by the flow meter is 100m3/h. Menu 6 9 High FO Flow Rate	High FO Flow Rate [68			
Set up low FO now rate, i.e. the corresponding now value when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz, then the low flow at this moment measured by the flow meter is 100m3/h. Menu 6 9 High FO Flow Rate Enter the high FO flow rate, i.e. the corresponding flow value	High FO Flow Rate [68 100 m3/h			
 Set up low FO now rate, i.e. the corresponding now value when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz, then the low flow at this moment measured by the flow meter is 100m3/h. Menu 6 9 High FO Flow Rate Enter the high FO flow rate, i.e. the corresponding flow value when frequency output signal is at highest FO frequency. 	High FO Flow Rate [68 100 m3/h			
 Set up low FO how rate, i.e. the corresponding how value when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz, then the low flow at this moment measured by the flow meter is 100m3/h. Menu 6 9 High FO Flow Rate Enter the high FO flow rate, i.e. the corresponding flow value when frequency output signal is at highest FO frequency. 	High FO Flow Rate [68 100 m3/h			
Set up low FO now rate, i.e. the corresponding now value when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz, then the low flow at this moment measured by the flow meter is 100m3/h. Menu 6 9 High FO Flow Rate Enter the high FO flow rate, i.e. the corresponding flow value when frequency output signal is at highest FO frequency. Menu 7 0 LCD Backlit Option	High FO Flow Rate [68 100 m3/h			
 Set up low FO how rate, i.e. the corresponding how value when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz, then the low flow at this moment measured by the flow meter is 100m3/h. Menu 6 9 High FO Flow Rate Enter the high FO flow rate, i.e. the corresponding flow value when frequency output signal is at highest FO frequency. Menu 7 0 LCD Backlit Option Select LCD backlit controls. 	High FO Flow Rate [68 100 m3/h LCD Backlight Option 10 Sec			
 Set up low FO how rate, i.e. the corresponding how value when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz, then the low flow at this moment measured by the flow meter is 100m3/h. Menu 6 9 High FO Flow Rate Enter the high FO flow rate, i.e. the corresponding flow value when frequency output signal is at highest FO frequency. Menu 7 0 LCD Backlit Option Select LCD backlit controls. For example, If the user enter "10", the backlighting will 	High FO Flow Rate [68 100 m3/h LCD Backlight Option 10 Sec			
 Set up low FO how rate, i.e. the corresponding how value when output signal frequency is at the lowest FO frequency. For example, when the low FO frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz, then the low flow at this moment measured by the flow meter is 100m3/h. Menu 6 9 High FO Flow Rate Enter the high FO flow rate, i.e. the corresponding flow value when frequency output signal is at highest FO frequency. Menu 7 0 LCD Backlit Option Select LCD backlit controls. For example, If the user enter "10", the backlighting will keep on for "10" seconds then turn off automatically. 	High FO Flow Rate [68 100 m3/h LCD Backlight Option 10 Sec			
 Set up fow PO how Po frequency is 1000Hz, low FO flow rate is 100m3/h (when the frequency output is 1000Hz, then the low flow at this moment measured by the flow meter is 100m3/h. Menu 6 9 High FO Flow Rate Enter the high FO flow rate, i.e. the corresponding flow value when frequency output signal is at highest FO frequency. Menu 7 0 LCD Backlit Option Select LCD backlit controls. For example, If the user enter "10", the backlighting will keep on for "10" seconds then turn off automatically. 	High FO Flow Rate [68 100 m3/h LCD Backlight Option 10 Sec			
 Set up fow PO how Poh	High FO Flow Rate [68 100 m3/h LCD Backlight Option 10 Sec			

Menu 7 2			170
Working Timer		Working Timer	[72
Display the totalized working	hours of the flow meter since	12345678:36:21	
last reset. It is displayed by H	H:MM:SS. If it is necessary to		
reset it, press ENT , and selec	t "YES".		
Menu 7 8			
OCT Output Setup		OCT Output Setup	[/8
The OCT output in the flow	meter is a kind of isolated	0. No Signal	
collector open circuit output	with programmable open and		
close qualifications. The use	r can program the open and		
close functions under the fol	lowing conditions: the system		
alarm signals are being activ	vated or the totalizer pulse is		
being transmitted.			
The frequency output signal	is also transmitted from the		
OCT. When it functions as	the frequency output, other		
functions are unavailable The	e following signal options are		
available:			
0. No Signal	1. Poor Signal		
2. Not Ready (No*R)	3. Reverse Flow		
4. AO Over 100%	5. FO Over 120%		
6. Alarm #1	7. Reverse Alarm #2		
8. Batch Controller	9. POS Int Pulse		
10. NEG Int Pulse	11. NET Int Pulse		
12. Energy POS Pulse	13. Energy NEG Pulse		
14. Energy NEG Pulse	15. MediaVel=>Thresh		
16. MediaVel <thresh< td=""><td>17. ON/OFF via RS485</td><td></td><td></td></thresh<>	17. ON/OFF via RS485		
18. Timer(M51 Daily)	19. Timed Alarm #1		
20. Timed Alarm #2	21. Batch Total Full		
22. Timer by M51	23. Batch 90% Full		
24. Flow Rate Pulse	25. Disable OCT		

Menu 7 9				170
Relay Output Setup	RELAY		[/9	
The relay output in the flow me	eter is programmable.	0.	NO SIGNAI	
The user can program the op	pen and close functions under			
the following conditions: the	e system alarm signals are			
activated or the totalizer puls	e is transmitting. The relay is			
single-pole and constant-on for	or external instrument controls.			
The following options are avail	able:			
1. No Signal	2. Poor Signal			
3. Not Ready (No*R)	4. Reverse Flow			
5. AO Over 100%	6. Alarm #1			
7. Reverse Alarm #2	8. Batch Controller			
9. POS Int Pulse	10. NEG Int Pulse			
11. NET Int Pulse	12. Energy POS Pulse			
13. Energy NEG Pulse	14. Energy NEG Pulse			
15. MediaVel=>Thresh	16. MediaVel <thresh< td=""><td></td><td></td><td></td></thresh<>			
17. ON/OFF via RS485	18. Timer(M51 Daily)			
19. Timed Alarm #1	20. Timed Alarm #2			
21. Batch Total Full	22. Timer by M51			
23. Batch 90% Full	24. Disable Relay			
Menu 8 0				
Flow Batch CTRL		Batch T	rigger Select	
The choice of quantitative v	vindow of the launch control	0.	Key Pressing	
signal controller. The following	options are available:			
0. Key Pressing	1. Serial Port			
2. AI3 Rising Edge	3. AI3 Falling Edge			
4. Al4 Rising Edge	5. Al4 Falling Edge			
6. AI5 Rising Edge	7. AI5 Falling Edge			
8. Timer-Periodical	9. Timer-daily			

	FlowBatch Controller	
Flow Batch Controller	1000 m3	
The internal batch controller in the flow meter is able to		
control the input signals through keypad or analog input		
Serial Port. Output signals can be transmitted through OCT		
or relay. The flow batch value can be modified in this		
window. The screen will enter the batch control display as		
soon as the modification completed.		
Menu 8 2		
Date Totalizer	Date Totalizer [82	
It is possible to review the historical flow data totalizer for	0. Browse by Day	
any day for the last 64 days, any month for last 64 months		
and any		
year for last 5 years.		
0. Browse by Day		
2. Browse by Year		
Menu 8 3		
Automatic Flow Correction	Automatic Amending	
With the function of automatic flow correction, the flow lost in	OFF	
an offline session can be estimated and automatically		
adjusted. The estimate is based on the average value, which		
is obtained from flow rate before going offline and flow		
measured after going online the next time, multiplied times		
the time period that the meter was offline. Select "NO" to		
cancel this function.		
Menu 9 0		
Signal Strength and Signal Quality	Strength+Quality [90	
Display the measured signal strength and signal quality ${\sf Q}$	UP : 75.5 DN : 75.4 Q=95	
value upstream and downstream.		
Signal strength is indicated from 00.0 \sim 99.9. A reading of		
00.0 indicates no signal detected, while 99.9 indicates		
maximum signal strength. Normally the signal strength		
should be ≥60.0. Signal quality Q is indicated by 00 \sim 99.		
Therefore, 00 indicates the poorest signal while 99 indicates		
the best signal. Normally, signal quality Q value should be		
better than 50.		

Menu 9 1	TOM/TOS*100 [01
TOM/TOS*100	
Display the ratio between the actual measured transmit time	100.0000 %
and the calculated transmit time according to customer's	
requirement. Normally the ratio should be 100±3%. If the	
difference is too large, the user should check that the	
parameters are entered correctly especially the sound	
velocity of the fluid and the installation of the transducers.	
This data is of no use before the system is ready.	
Menu 9 2	
Fluid Sound Velocity	Fluid Sound Velocity
Display the measured fluid sound velocity. Normally this	1985.45 m/s
value should be approximately equal to the entered value in	
Window M21. If the difference is too large, it probably results	
from an incorrect value entered in Window M21 or improper	
installation of the transducers.	
Menu 9 3	
Total Time and Delta Time	TotalTime, DeltaTime
Display the measured ultrasonic average time (unit: nS) and	9.7654uS, 189.125nS
delta time of the upstream and downstream (unit: nS) time.	
The velocity calculation in the flow meter is based on the two	
readings. The delta time is the best indication that the	
instrument is running steadily. Normally the fluctuation in the	
ratio of the delta time should be lower than 20%. If it is not, it	
is necessary to check if the transducers are installed	
properly or if the parameters have been entered correctly.	
Menu 9 4	
Reynolds Number and Factor	Reynolds No, Profile
Display the Reynolds number that is calculated by the	352.07 0.7500
flow meter and the factor that is set currently by the	
flow meter. Normally this scaling factor is the average of the	
line and surface velocity factor inside the pipe.	

Menu UP 0	Power ON/OFF Time [+0			
Power ON/OFF Time	Press ENT When Ready			
To view the power on/off time and flow rate for the last 64	·			
update times to obtain the offline time period and the				
corresponding flow rate. Enter the window, press ENT to	00 13-06-25 09:43:05			
display the last update before the last 64 times of on/off time	ON 00 0 m3/h			
and flow rate values. "ON" on right hand indicates that time	·	I		
power is on; "00" on the upper left corner indicates "00-07-18				
12:40:12" the date time; flow rate is displayed in the lower				
right corner.				
Menu UP 1	T . 1.00 . 1.01			
Total Working Hours	Iotal Work Hours [+1			
With this function, it is possible to view the total working	12345678 : 42 : 45			
hours since the flow meter left the factory.				
The figure on the right indicates that the total working hours				
since the flow meter left the factory is 12345678 hours 42				
minutes 45 seconds.				
Menu UP 2	Last Dower Off Time			
Last Power Off Time				
Display the last power off time.	13-07-02 09 : 43 : 05			
Menu UP 3	Let flew Bets 122			
Last Flow Rate	Last Flow Rate [+3			
Displays the last flow rate.	123.456 m3/h			
Menu UP 4				
Total ON/OFF Times	ON/OFF Time [+4			
Display total on/off times since the flow meter left the	00000027			
factory.		I		

7. Error Diagnoses

The ultrasonic flow meter has advanced self-diagnostics functions and displays any errors in the upper right corner of the LCD via definite codes in a date/time order. Hardware error diagnostics are usually performed each time the flow meter is powered on. Some errors can be detected during normal operation. Undetectable errors caused by incorrect settings and unsuitable measurement conditions will be displayed accordingly. This function helps to detect the errors and determine causes quickly; thus, problems can be solved in a timely manner according to the solutions listed in the following tables.

Errors displayed in the flow meter are divided into two categories:

Table 1 is for errors displayed during self-diagnostics upon powering on the flow meter. "* F" may be displayed on the upper left corner of the screen after entering the measuring mode. When this occurs, it is necessary to power on for self-diagnostics once again to detect and solve possible errors using the table below. If a problem still exists, please contact the factory or the factory's local representative for assistance.

 Table 2 applies when errors caused by incorrect settings and signals are detected and are announced by error codes displayed in Window M08.

LCD Display	Cause	Solution		
Rom Parity Error	System ROM illegal or error	Contact the factory		
Stored Data Error	System stored data block error	Power on again or contact the factory		
SCPU Fatal Error!	SCPU circuit fatal error	Power on again or contact the factory		
Timer Slow Error	System clock error	Contact the factory		
Timer Fast Error				
CPU or IRQ Error	CPU or IRQ problem	Power on again		
System RAM Error	System RAM questionable	Power on again or contact the factory		
Time or Bat Error	System date time chip error	Power on again or contact the factory		
No Display, Erratic or Abnormal	Bad wiring connection	Check wiring connections		
Operation				
Stroke Key - No Response	Keypad locked or bad plug	Enter the unlock password if the		
	connection	keypad is locked		

7.1. Table 1. Self-diagnoses and Error Solutions (upon power on)

7.2. Table 2. Error codes and solutions (during operation)

CODE	MO8 DISPLAY	CAUSE	SOLUTION
* R	System Normal	Systemnormal	No errors
* J	Sub CPU Fatal Error	Sub CPU defect	Connect the factory
*	Signal not detected	Signal not detected	Attach transducer to the pipe and tighten it
			securely. Apply a plenty of coupling
			compound on transducer and pipe wall.
		Spacing is not correct between	Remove any rust, scale, or loose paint from
		the transducers or not enough	the pipe surface. Clean it with a file.
		coupling compound applied to	
		face of transducers.	
		Transducers installed improperly	Check the initial parameter settings.
		Scale is too thick	Remove the scale or change the scaled pipe
			section. Normally, it is possible to change a
			measurement location. The instrument may
			run properly at a new site with less scale.
		New pipe liner	Wait until liners solidified and saturated.
* H	Low Signal strength	Signal strength is low	Solve as the upper
* H	Poor Signal Quality	Signal quality is poor Including	Use corresponding solve
* Q	Frequency output	Adjust actual flow as frequency	Re-check the frequency output settings
	over	output 120%.	(refers to M66-M69 specifications) or confirm
			whether the actual flow quantity is too large.
* E	Current Loop Over	The value error between	Re-check the settings (refers to M56
		neighbor two measurement is	specifications) or confirm whether the actual
		over 120%, this is normal	flow quantity is too large.
		phenomenon when the flow is	
* F	Pafars to table1		The to turn the power on easin and electric
		and self-monitoring stormal	the displayed information and deal with it
		hardware obstacle	according to the last table. Please contact
			the manufacture if it still have the treated
			the manufacture if it still has the trouble.
		The eatting is that adjusting did	
* G	ADJ GAIN = > S1	increase. If instrument stops or	Iry concerned solution.
	ADJ GAIN= > 52	switch at S1, S2, the it will have	
	ADJ GAIN= > SS	signal wavelength of too low or	
*K	Pipe Empty	No fluid in pipe or settings	Once fluid is detected in the pipe, set 0 in
	Set in Window M29	incorrect	Window M29

7.3. Frequently Asked Questions and Answers

Question: New pipe, high quality material, and all installation requirements met: Why still no signal detected?

Answer: Check pipe parameter settings, installation method and wiring connections. Confirm if the coupling compound is applied adequately, the pipe is full of liquid, transducer spacing agrees with the screen readings and the transducers are installed in the right direction.

Question: Old pipe with heavy scale inside, no signal or poor signal detected: How can it be resolved?

Answer: Check if the pipe is full of fluid. Try the **Z method** for transducer installation (If the pipe is too close to a wall, or it is necessary to install the transducers on a vertical or inclined pipe with flow upwards instead of on a horizontal pipe). Carefully select a good pipe section and fully clean it, apply a wide band of coupling compound on each transducer face (bottom) and install the transducer properly. Slowly and slightly move each transducer with respect to each other around the installation point until the maximum signal is detected. Be careful that the new installation location is free of scale inside the pipe and that the pipe is concentric (not distorted) so that the sound waves do not bounce outside of the proposed area. For pipe with thick scale inside or outside, try to clean the scale off, if it is accessible from the inside.

(Note: Sometimes this method might not work and sound wave transmission is not possible because of the a layer of scale between the transducers and pipe inside wall).

Question: Why is the CL output abnormal?

Answer: Check to see if the desired current output mode is set in Window M55. Also, check to see if the maximum and minimum current values are set properly in Windows M56 and M57. Recalibrate CL and verify it in Window M59.

Question: Why is the flow rate still displayed as zero while there is fluid obviously inside the pipe and a symbol of "R" displayed on the screen?

Answer: Check to see if "Set Zero" was carried out with fluid flowing inside the pipe(Refer to Window M42). If it is confirmed, recover the factory default in Window M43.

Question: With a poor measurement site environment in the plant and the voltage and power supplies fluctuating widely, is the instrument really able to keep running 24 hours a day repeatedly without stopping and last for several years under such conditions?

Answer: The FUM-1000 flow meter is designed to work with high reliability under such conditions. It is provided with an intelligent signal conditioning circuit and internal correction circuitry. FUM-1000 will work under strong interference conditions and is able to adjust itself with strong or weak sound waves. It will work in a wide band of voltage: 90-245VAC or 10V~36VDC voltage.

8. Product Overview

8.1. Introduction

The FUM-1000 is a state-of-the-art universal transit-time flow meter designed using SLSI technology and low voltage broadband pulse transmission. While principally designed for clean liquid applications, the instrument is tolerant of liquids with small amounts of air bubbles or suspended solids found in most industrial environments.

8.2. Features of FUM-1000 Dedicated

With distinctive features such as high precision, high reliability, high capability and low cost, the flow meter features other advantages:

- Low consumption power, high reliability, anti-jamming and outstanding applicability.
- Clear, user-friendly menu selections make flow meter simple and convenient to use.
- U.S., British and Metric measurement units are available. Meanwhile, almost all-universal measurement units worldwide may be selected to meet customer's requirements.
- Daily, monthly and yearly totalized flow: Totalized flow for the last 64 days and months as well as for the last 5 years are may be viewed.
- Power on/off function: allows the viewing of time and flow rate as power is switched on and off 64 times. Also, the flow meter has manual or automatic amendment during offline sessions.
- Self-contained signal output, including relay, open collector, frequency and 4~20mA current loop analog outputs, etc.
- Parallel operation of positive, negative and net flow totalizes with scale factor (span) and 7 digit display, while the output of totalize pulse and frequency output are transmitted via relay and open collector.
- Internally configured batch controller makes batch control convenient.

8.3. Theory of Operation

When the ultrasonic signal is transmitted through the flowing liquid, there will be a difference between the upstream and downstream transit time (travel time or time of flight), which is proportional to flow velocity, according to the formula below.

$$T_{UP} = \frac{MD / COS\theta}{Co + VSIN\theta}$$
(1)
$$T_{DOWN} = \frac{MD / COS\theta}{Co - VSIN\theta}$$
(2)

- M Spreading times
- D inner diameter
- θ Sending in angle
- C₀ Fluid static sound velocity
- T_{UP} positive spreading time
- T_{DOWN} negative spreading time
- $\triangle T$ spreading time difference (=T_{UP}-T_{DOWN})

The average velocity is gotten in pipe, when (1) and (2) are equal.

$$V = \frac{MD}{Sin2\theta} \quad \bullet \frac{\bigtriangleup T}{T_{UP} x T_{DOWN}}$$

8.4. Applications

- Water, sewage (with low particle content) and seawater
- Water supply and drainage water
- Power plants (nuclear power plant, thermal and hydropower plants), heat energy, boiler feed water and energy management system
- Metallurgy and mining applications (cooling water and acid recovery, for example)
- Petroleum and chemicals
- Food, beverage and pharmaceutical
- Marine operation and maintenance
- Energy economy supervision and water conservation management
- Pulp and paper
- Pipeline leak detection
- Regular inspection, tracking and collection
- Energy measuring and balance
- Network monitoring systems and energy/flow computer management

8.5. Specifications

ITEM CONTENTS		CONTENTS			
	Matarial	Steel , Stainless steel, Cast iron, Harden plastic			
	Materiai	(concrete and lining pipe need discuss)			
Pipe	Inner diameter	25 ~ 6000mm			
	Vertical pipe	Confirmed straight pipe of upper stream 10D, downstream 5D			
	length	Pump outlet side needs straight pipe of 30D. (reference page 13 and 14)			
	Sort	Most liquid measure: Water, seawater, oil, chemical and etc			
Fluid	Turbidity	Clear liquid with no air bubbles (less than 10000ppm (mg/l))			
	Temperature	-20 $^\circ$ C ~ +80 $^\circ$ C, (the liquid without freezing, brine)			
	Velocity	0m/s ~±30m/s			
	Sorts of	Clamp-On S, Clamp-On M2, Clamp-On L2			
	sensor	Insertion Type B			
Sensor		"V" method : in general, suitable for small pipe diameters _ D≤350mm;			
	Installation	"7" method : in general, suitable for small pipe diameters D≥350mm;			
	method	"W" method : D≤50mm			
	Cable length	Standard: 10m, Max: 200m. Wire resistance: 75Ω			
	Display	Digital backlight LCD of character numeric (2×20)			
	Keyboard	4×4 keyboard			
	Installation	on-wall mounting in gauge room or gauge box			
	method				
		4 ~ 20mA or 0 ~ 20mA current loop, precision 0.1%			
	Output	RS-485			
Body		Output frequency range of programs : 1 ~ 9,999Hz (OCT output)			
		Relay output			
	Power supply	FUM-1000 wall-mounting type: 110VAC, 220VAC ±10% or 8~36VDC			
	Power	2 Watts			
	Size	FUM-1000 installation type : 251×92×80mm;			
	Weight	FUM-1000 : 3.1 Kg,			
	Terrerenturo	Body : -20 ~ 50 ℃			
Environ	Temperature	Sensor : -20 ~ 80 ℃			
Environ-		Body:85% RH(40℃)			
ment	Humidity	Sensor : 98% RH ($40{}^\circ\!{\rm C}$) , (submersible measurement until underwater 2m			
		depth)			
		±1.0% after Calibration			
۵c	curacy	Reproducibility: ±0.2%~0.5% at 0 ~ ±30m/s			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	curacy	Linearity 0.5%			
		Data output cycle : 500ms			
Driv	ring Time	Subsequently			

# 9. Appendix1 - Flow Application Data

9.1 Fluid Sound Velocity and Viscosity

				U	nit : m/s
Fluid type	Sound velocity	Viscosity	Fluid type	Sound velocity	Viscosity
Water 20°C	1482	1.0	Glycerin	1923	1180
Water 50°C	1543	0.55	Gasoline	1250	0.80
Water 75℃	1554	0.39	66# gasoline	1171	
Water100℃	1543	0.29	80# gasoline	1139	
Water 125°C	1511	0.25	0# diesel oil	1385	
Water 150°C	1466	0.21	Benzene	1330	
Water 175°C	1401	0.18	Ethylbenzene	1340	
Water 200°C	1333	0.15	Toluene	1170	0.69
Water 225℃	1249	0.14	Carbon tetrachloride	938	
Water 250℃	1156	0.12	Coal oil	1420	2.3
Acetone	1190		Petroleum	1290	
Acrbinor	1121		Pine oil	1280	
Ethanol	1168		Trichloroethylene	1050	0.82
Alcohol	1440	1.5	Peanut oil	1472	
Acetophenone	1310		Eastor oil	1502	
Acetaldehyde	1180				
Glycol	1620				

#### 9.2 Sound Velocity in Liquids

Temperature and purity matter the sound velocity greatly, to pay more attention in fact.

The follow is sound velocity in liquids 20°C purity 100% :

1200m/s	Methanol, Ethanol, Octane, Ethanoic acid, Proponent, Ethyl ether
1400m/s	Light oil, Transformer oil, Spindle oil, O-dim ethyl benzene
1600m/s	Aniline, Diethyl alcohol.
1800m/s	Glycerin

Substance	Form	Temp.	Sound Vel	Kinematics Viscosity	Substance	Form	Temp.	Sound Vel	Kinematics Viscosity
ouseunee	Index	(°C)	(m/s)	(m ² /s 10 ⁻⁶ )	oussume	Index	(°C)	(m/s)	(m ² /s 10 ⁻⁶ )
Acetic acid	CH₃COOH	20	1159		Cinnamaldehyde	C ₉ H ₈ O	25	1554	
Acetic anhydride	(CH ₃ CO) ₂ O	20	1180	0.769	Cinnamic aldehyde	C ₉ H ₈ O	25	1554	
Acetic acid, anhydride	(CH ₃ CO) ₂ O	20	1180	0.769	Colamine	C ₂ H ₇ NO	25	1724	
Acetonitrile	C ₂ H ₃ N	25	1290	0.441	o-cresol	C7H8O	20	1541	4.29 (40°C)
Ethyl acetate	C ₄ H ₈ O ₂	25	1085	0.467	m-cresol	C7H8O	20	1500	5.979 (40°C)
Methyl acetate	$C_3H_6O_2$	25	1211	0.407	Cyanomethane	$C_2H_3N$	25	1290	0.441
Acetone	C ₃ H ₆ O	20	1190	0.407	Cyclohexane	C ₆ H ₁₂	20	1284	1.31 (17℃)
Acetonitrile	C ₂ H ₃ N	25	1290	0.441	Cyclohexanol	C6H12O	25	1454	0.071 (17°C)
Acetonylacetone	C ₆ H ₁₀ O ₂	25	1399		Cyclohexanone	C6H10O	25	1423	
Acetylen dichloride	$C_2H_2C_{12}$	25	1015	0.400	Decane	C ₁₀ H ₂₂	25	1252	1.26 (20°C)
Acetylene tetrabromide	C ₂ H ₂ Br ₄	25	1027		1-decene	C ₁₀ H ₂₀	25	1235	
Acetylene tetracloride	C ₂ H ₂ C ₁₄	25	1147	1.156 (15°C)	n-decylene	C ₁₀ H ₂₀	25	1235	
Ethyl alcohol	C ₂ H ₆ O	25	1207	1.396	Diacetyl	$C_4H_6O_2$	25	1236	
Alkazene-13	C ₁₅ H ₂₄	25	1317		Diamylamine	$C_{10}H_{23}N$	25	1256	
Alkazene-25	C10H12C12	25	1307		1, 2-dibromo-ethane	$C_2H_4Br_2$	25	995	0.79 (20°C)
2-amino-ethanol	C ₂ H ₇ NO	25	1724		trans-1, 2-dibromoethene	$C_2H_2Br_2$	25	935	
2-aminotolidine	C ₇ H ₉ N	25	1618	4.394 (20°C)	Dibutyl phthalate	$C_6H_{22}O_4$	25	1408	
4-aminotolidine	C7H9N	25	1480	1.863 (50°C)	Dichloro-t-butyl alcohol	C ₄ H ₈ Cl ₂ O	25	1304	
Ammonia	NH ₃	-33	1729	0.292	2, 3-dichlorodixane	$C_2H_6Cl_2O_2$	25	1391	
t-amyl alcohol	$C_5H_{12}O$	25	1204	4.374	dichlorodifluoromethane	$CCl_2F_2$	25	774.1	
Aminobenzene	$C_6H_5NO_2$	25	1639	3.63	(Freon 12)				
Aniline	$C_6H_5NO_2$	20	1659	1.762	1, 2-dichloro ethane	C ₂ H ₄ Cl ₂	25	1193	0.61
Azine	C ₆ H₅N	25	1415	0.992	cis1, 2-dichloro-ethane	$C_2H_2CI_2$	25	1061	
Benzene	C ₆ H ₆	25	1306	0.711	trans 1, 2-dichloro-ethane	C ₂ H ₂ Cl ₂	25	1010	
Benzol	C ₆ H ₆	25	1306	0.711	Dichlorofluoro-	CHCl₂F	0	891	
Bromine	Br ₂	25	889	0.323	methane (Freon21)				
Bromobenzene	C₀H₅Br	25	1170	0.693	1-2-dichlorohexa-	$C_4Cl_2F_6$	25	669	
1-bromo-butane	C₄H ₉ Br	20	1019	0.49 (15°C)	fluorocyclobutane				
Bromoethane	C₂H₅Br	20	900	0.275	1-3-dichloro-isobutane	C ₄ H ₈ Cl ₂	25	1220	
Bromoform	CHBr₃	20	918	0.654	Dichloro methane	CH ₂ Cl ₂	25	1070	0.31
n-butane	C ₄ H ₁₀	-5	1085		1, 1-dichloro-1, 2, 2, 2	CCIF ₂ -	25	665.3	
2-butanol	C4H10O	25	1240	3.239	-tetra fluoroethane	CCIF ₂			
sec-butylalcohol	C ₄ H ₁₀ O	25	1240	3.239	Diethyl ether	C4H10O	25	985	0.311
n-butyl bromide	C ₄ H ₉ Br	20	1019	0.49 (15°C)	Diethylene glycol	C ₄ H ₁₀ O ₃	25	1586	
n-butyl chloride	C ₄ H ₉ Cl	25	1140	0.529	Diethylene glycol,	C6H14O3	25	1458	
tert butyl chloride	C ₄ H ₉ Cl	25	984	0.646	monoethyl ether				
Butyl oleate	C ₂₂ H ₄₂ O ₂	25	1404	0.529	Diethylenimide oxide	C ₄ H ₉ NO	25	1442	
2,3 butylene glycol	C ₄ H ₁₀ O ₂	25	1484		1, 2-bis (difluoramino)	C ₄ H ₈ (NF ₂ ) ₂	25	1000	
Carbinol	CH ₄ O	25	1076	0.695	butane				
Carbitol	$C_6H_{14}O_3$	25	1458		1, 2-bis (difluoramino)-	$C_4H_9(NF_2)_2$	25	900	
Carbon dioxide	CO ₂	-37	839	0.137	2-methylpropane				
Carbon disulphide	CS ₂	20	1158	0.290	1, 2-bis (difluoramino)	$C_3H_6(NF_2)_2$	25	960	
Carbon tetrachloride	CCl ₄	20	938	0.608	propane				
Cetane	C ₁₆ H ₃₄	20	1338	4.32	2, 2-bis (difluoramino)	C ₃ H ₆ (NF ₂ ) ₂	25	890	
Chlorobenezene	C ₆ H₅CI	20	1289	0.722 (25°C)	propane				

### 9.3 Fluid Sound Velocity and Viscosity

# FLOVEL CO.,LTD. Instruction Manual

Model FUM-1000

		1			M		-		
1-Chlorobutane	C ₄ H ₉ Cl	25	1140	0.529	2, 2-dihydroxy-	$C_4H_{10}O_3$	25	1586	
Chloroform	CHCl₃	20	931	0.383	dilethyrther	0.11.0		4050	
1-chloropropane	C ₃ H ₇ Cl	25	1058	0.378	Dihdroxyethane	C ₂ H ₆ O ₂	25	1658	4.00/00000
1, 3-dimethyl-benzene	C ₈ H ₁₀	20	1343	0.749 (15°C)	Hexadecane	C ₁₆ H ₃₄	25	1338	4.32(20°C)
1, 2-dimethyl-benzene	C ₈ H ₁₀	25	1331.5	0.903 (20°C)	Hexalin	C ₁₆ H ₁₂	25	1454	70.69(17°C)
1, 4-dimethyl-benzene	C ₈ H ₁₀	20	1334	0.662	Hexane	C ₆ H ₁₄	25	1112	0.446
2,2-dimethyl-butane	C ₆ H ₁₄	25	1079		n-hexane	C ₆ H ₁₄	20	1083	0.489
Dimethyl ketone	C ₃ H ₆ O	25	1174	0.399	2, 5-hexanedione	C ₆ H ₁₀ O ₂	25	1399	
Dimethyl	C7H16	25	1063		n-hexanol	C ₆ H ₁₄ O	25	1300	
Dimethyl phthalate	C ₈ H ₁₀ O ₄	25	1463		Hexahydrobenzene	C ₆ H ₁₂	25	1248	1.31(17℃)
Diiodo-methane	CH ₂ I ₂	25	980		Hexahydrophenol	C ₆ H ₁₂ O	25	1454	
Dioxane	C ₄ H ₈ O ₂	25	1376		Hexamethylene	C ₆ H ₁₂	25	1248	1.31
Dodecane (23)	C ₁₂ H ₂₆	25	1279	1.80	2-hydroxy-toluene	C7H8O	20	1541	4.29 (40°C)
1, 2-ethanediol	C ₂ H ₆ O ₂	25	1658		3-hydroxy-toluene	C7H8O	20	1500	5.979 (40°C)
Ethanenitrile	C ₂ H ₃ N	25	1290	0.441	lodo-benzene	C ₆ H₅I	20	1114	0.954
Ethanoic anhydride(22)	(CH ₃ CO) ₂ O	25	1180	0.769	lodo-ethane	C₂H₅I	20	876	0.29
Ethanol	C ₂ H ₆ O	25	1207	1.39	lodo-methane	CH₃l	25	978	0.211
Ethanol amide	C ₂ H ₇ NO	25	1724		Isobutyl acetate	C6H12O	27	1180	
Ethoxyethane	C ₄ H ₁₀ O	25	985	0.311	Isobutanol	C ₄ H ₁₀ O	25	1212	
Ethyl acetate	C ₄ H ₈ O ₂	20	1164	0.499	lso-butane		25	1219.8	0.34
Ethyl alcohol	C ₂ H ₆ O	25	1207	1.396	Isopentane	C5H12	25	980	0.34
Ethyl benzene	C ₈ H ₁₀	20	1338	0.797(17℃)	Isopropanol (46)	C ₃ H ₈ O	20	1170	2.718
Ethyl Bromide	C ₂ H ₅ Br	20	900	0.275	Isopropyl alcohol	C3H8O	20	1170	2.718
Ethyliodide	C ₂ H ₅ I	20	876	0.29	Kerosene		25	1324	
Ether	C ₄ H ₁₀ O	20	1006	0.336	Ketohexamethylene	C6H10O	25	1423	
Ethvl ether	C4H10O	25	985	0.311	Mercury	Ha	20	1451	0.114
Ethylene bromide	C ₂ H ₄ Br ₂	25	995	0.79	Mesitvloxide	C6H16O	25	1310	
Ethylene chloride	C ₂ H ₄ Cl ₂	25	1193	0.61	Methanol	CH₄O	25	1076	0.695
Ethylene alvcol	C2H6O2	20	1666	21.112	Methyl acetate	C ₃ H ₆ O ₂	20	1181	0.411
50% glycol/50% H ₂ O		25	1578		o-methylaniline	C7H9N	25	1618	4.394 (20°C)
d-fenochone	C ₁₀ H ₁₆ O	25	1320	0.22	4-methylaniline	C ₇ H ₉ N	25	1480	1.863 (50°C)
d-2- fenochone	C ₁₀ H ₁₆ O	25	1320	0.22	Methyl alcohol	CH ₄ O	25	1076	0.695
Fluoro-benzene (46)	C₀H₅F	25	1189	0.584	Methyl benzene	C7H8	20	1328	0.644
Formaldehyde,	C ₂ H ₄ O ₂	25	1127		2-methyl-butane	C5H12	25	980	0.34
methylester					Methyl carbinol	C ₂ H ₆ O	25	1207	1.396
Formamide	CH₃NO	25	1622	2.91	Methyl-chloroform	C ₂ H ₃ Cl ₃	25	985	0.902 (20°C)
Formic asid, amide	CH₃NO	25	1622	2.91	Methyl-cyanide	C ₂ H ₃ N	25	1290	0.441
Freon R12		25	774.2		3-methyl cyclohexanol	C7H14O	25	1400	
Furfural	$C_5H_4O_2$	25	1444		Methylene chloride	CH ₂ Cl ₂	25	1070	0.31
Furfuryl alcohol	$C_5H_6O_2$	25	1450		Methylene iodide	CH ₂ l ₂	25	980	
Fural	$C_5H_4O_2$	25	1444		Methyl formate	$C_2H_4O_2$	25	1127	
2-furaldehyde	$C_5H_4O_2$	25	1444		Methyl iodide	CH₃I	25	978	0.211
2-furancarboxalde-hyde	C ₅ H ₄ O ₂	25	1444		α-methyl napthalene	C11H10	25	1510	
2-furyl-methanol	$C_5H_6O_2$	25	1450		2-methylphenol	C7H8O	20	1541	4.29 (40°C)
Gallium	Ga	30	2870		3-methylphenol	C7H8O	20	1500	5.979 (40°C)
Glicerin	C ₃ H ₈ O ₃	20	1923	1188.5	Milk, homogenized		25	1548	
Glycerol	C ₃ H ₈ O ₃	25	1904	757.1	Morpholine	C ₄ H ₉ NO	25	1442	
Glycol	$C_2H_6O_2$	25	1658		Naphtha		25	1225	

# FLOVEL CO.,LTD. Instruction Manual

Model FUM-1000

Heptane	C7H16	25	1131	0.598(20°C)	Nitrobenzene	$C_6H_5NO_2$	20	1473	1.665
n-heptane	C7H16	25	1180		Nitromethane	CH ₃ NO ₂	25	1300	0.549
Hexachloro-	C5C16	25	1150		Nonane	C ₉ H ₂ O	25	1207	0.99(20°C)
cyclopentadiene					1-nonene	C9H18	25	1207	
Octane	C8H18	25	1172	0.73	Refrigerant 21	CHCl ₂ F	0	891	
n-octane	C8H18	20	1192	0.737(25℃)	Refrigerant 22	CHCIF ₂	50	893.9	
1-octene	C ₈ H ₁₆	25	1175.5		Refrigerant 113	$CCI_2F-CCIF_2$	0	783.7	
Oil of camphor		25	1390		Refrigerant 114	CCIF ₂ -CCIF ₂	-10	665.3	
Sassafrassy					Refrigerant 115	$C_2 CIF_5$	-50	656.4	
Oil, car(SAE 20a.30)		25	870	190	Refrigerant C318	$C_4F_8$	-10	574	
Oil, castor	C11H10O10	25	1477	0.670	Silicone (30cp)		25	990	30
Oil, diesel		25	1250		Solvesso #3		25	1370	
Oil, fuel AA gravity		25	1485		Spirit of wine	C ₂ H ₆ O	25	1207	1.396
Oil (Lubricating X200)		25	1530		Sulfuric Acid	$H_2SO_4$	25	1257.6	11.16
Oil (olive)		25	1431	100	1, 1, 2, 2-tetrabromo-ethane	C ₂ H ₂ Br ₄	25	1027	
Oil (peanut)		25	1458		1, 1, 2, 2-tetrachloro-ethane	C ₂ H ₂ Cl ₄	25	1147	1.156 (15℃)
Oil (sperm)		25	1440		Tetrachloroethane	C ₂ H ₂ Cl ₄	20	1170	1.19
Oil, 6		22	1509		Tetrachloroethene	C ₂ Cl ₄	25	1036	
2, 2-oxydiethanol	C ₄ H ₁₀ O ₃	25	1586		Tetrachloro-Methane	CCl ₄	25	926	0.607
Pentachloroethane	C₂HCl₅	25	1082		Tetradecane	C ₁₄ H ₃ O	20	1331	2.86
Pentalin	C₂HCI₅	25	1082		Tetraethylene glycol	$C_8H_{18}O_5$	25	1586	
Pentane	C₅H1₂	25	1020	0.363	Tetrahydro-1, 4-isoxazine	C4H9NO	25	1442	
n-pentane	C₅H1₂	20	1032	0.366	Toluene	C7H8	20	1328	0.644
Perchlorocyclo-	C ₅ Cl ₆	25	1150		o-toluidine	C7H ₉ N	25	1618	4.394 (20°C)
pentadiene					p-toluidine		25	1480	1.863 (50°C)
Perchloroethylene	C ₂ Cl ₄	25	1036		Toluol	C7H8	25	1308	0.58
Perchloro-1-hepten	C ₇ F ₁₄	25	583		Tribromomethane	CHBr ₃	25	918	0.654
Perfluoro-n-hexane	C ₆ F ₁₄	25	508		1, 1, 1-trichloro-ethane	C ₂ H ₃ Cl ₃	25	985	0.902 (20°C)
Phene	C ₆ H ₆	25	1306	0.711	Trichloro-ethene	C ₂ HCl ₃	25	1028	
β-phenyl acrolein	C ₉ H ₈ O	25	1554		Trichloro-fluoromethane	CCl₃F	0	828.3	
Phenyl amine	C ₆ H ₅ NO ₂	25	1639	3.63	(Freon 11)				
Phenyl bromide	C₀H₅Br	20	1170	0.693	Trichloro-methane	CHCl₃	25	979	0.55
Phenyl chloride	C ₆ H₅Cl	25	1273	0.722	1, 1, 2-trichloro-	CCl ₂ F-CClF ₂	0	783.7	
Phenyl iodide	C₀H₅I	20	1114	0.954(15℃)	1, 2, 2-trifluoro-etham				
Phenyl methane	C7H8	20	1328	0.644	Triethylamine	C ₆ H ₁₅ N	25	1123	
3-Phenyl propenal	C ₉ H ₈ O	25	1554		Triethylene glycol	C ₆ H ₁₄ O ₄	25	1608	
Phthalardione	C ₈ H ₄ O ₃	152	1125		1, 1, 1-trifluoro-	C ₂ HClBrF ₃	25	693	
Pimelic ketone	C ₆ H ₁₀ O	25	1423		2-chloro-2-bromo-ethane				
Plexiglas, lucite, acrylic		25	2651		1, 2, 2-trifluorotrichlo-	CCl ₂ F-CClF ₂	0	783.7	
Refrigerant 11	CCl₃F	0	828.3		ethane (Freon 113)				
Propane	C ₃ H ₈	-45	1003		d-1,3,3-trimethylnorcamphor	C ₁₀ H ₁₆ O	25	1320	0.22
1, 2, 3-propanetriol	C ₃ H ₈ O ₃	25	1904	0.757x10 ⁻³	Trinitrotoluene	C7H5(NO2)3	81	1610	
1-propanol	C ₃ H ₈ O	20	1222		Turpentine		25	1255	1.4
2-propanol	C ₃ H ₈ O	20	1170	2.718	Unisis 800		25	1346	
2-propanone	C ₃ H ₆ O	25	1174	0.399	Water, distilled	H ₂ O	20	1482	1.00
Propene	$C_3H_6$	-13	963		Water, heavy	$D_2O$	20	1388	1.129
n-propyl acetate	$C_5H_{10}O_2$	2	1280		Water, sea		20	1520	1.00
n-propyl alcohol	C ₃ H ₈ O	20	1225	2.549	Wood alcohol	CH4O	25	1076	0.695
Propylchloride	C ₃ H ₇ Cl	25	1058	0.378	m-xylene	C ₈ H ₁₀	20	1343	0.749 (15°C)

# FLOVEL CO.,LTD. Instruction Manual

Model FUM-1000

Propylene	C ₃ H ₆	-13	963		o-xylene	C ₈ H ₁₀	25	1331.5	0.903 (20°C)
Pyridine	C ₆ H₅N	25	1415	0.992(20°C)	p-xylene	C ₈ H ₁₀	20	1334	0.662
Refrigerant 11	CCl₃F	0	828.3		Xylene hexafluoride	$C_8H_4F_6$	25	879	0.613
Refrigerant 12	CCl ₂ F ₂	-40	774.1						

## 9.4 Material Sound Velocity(at 25°C)

_	<b>,</b>			Unit : Velo	ocity (m/s)
Pipe material	Sound velocity	Pipe material	Sound velocity	Pipe material	Sound velocity
Steel 1% Carbon,hardened	3150	CuNi (90%Cu 10%Ni)	2060	Zinc, rolled	2440
Carbon Steel	3206	Brass (Naval)	2270(2050)	Glass, Pyrex	3276(3280)
Mild Steel	3235	Gold(hard-brawn)	1200	Glass, heavy silicate flint	2380
Steel 1% Carbon	3220	Inconel	3020	Glass,light borate crown	2840
Stainless Steel 302	3120	Iron (electrolytic)	3240	Nylon	2400
Stainless Steel 303	3120	Cast Iron	2460(3230)	Nylon,6-6	1070
Stainless Steel 304	3206	Lead	2170	Polyelathylene	1950
Stainless Steel 316	3175	Teflon	1225(1240)	Polyethylene(HD)	2310
Stainless Steel 347	3100	Iron(Armco)	3230	Polyethylene(LD)	1940
Stainless Steel 410	2990	Ductile Iron	3000	PVC, CPVC	2540(2400)
Stainless Steel 430	3360	Monel	2720	Acrylic	2730
Aluminum	3048(3080)	Nickel	2960	Asbestos Cement	2200
Aluminum (rolled)	3040	Tin, rolled	1670	Cement	4190
Copper	2260	Titanium	3150(3125)	Mortar	2500
Copper (annealed)	2325	Tungsten,annealed	2890	Rubber	1600(1900)
Copper (rolled)	2270	Tungsten, drawn	2640	FRP	2505
CuNi (70%Cu 30%Ni)	2540	Tungsten, carbide	3980	Teflon 1	1450
Tar Epoxy	2000	Plastic	2280	ABS	2286

	-			Unit : Temp. (°C), Velocity (m/s)										
<b>Temp.</b> (°C)	Sound velocity (m/s)	Temp. (°C)	Sound velocity (m/s)	Temp. (°C)	Sound velocity (m/s)	Temp. (°C)	Sound velocity (m/s)							
0	1402.3	25	1496.6	50	1542.5	75	1555.1							
1	1407.3	26	1499.2	51	1543.5	76	1555.0							
2	1412.2	27	1501.8	52	1544.6	77	1554.9							
3	1416.9	28	1504.3	53	1545.5	78	1554.8							
4	1421.6	29	1506.7	54	1546.4	79	1554.6							
5	1426.1	30	1509.0	55	1547.3	80	1554.4							
6	1430.5	31	1511.3	56	1548.1	81	1554.2							
7	1434.8	32	1513.5	57	1548.9	82	1553.9							
8	1439.1	33	1515.7	58	1549.6	83	1553.6							
9	1443.2	34	1517.7	59	1550.3	84	1553.2							
10	1447.2	35	1519.7	60	1550.9	85	1552.8							
11	1451.1	36	1521.7	61	1551.5	86	1552.4							
12	1454.9	37	1523.5	62	1552.0	87	1552.0							
13	1458.7	38	1525.3	63	1552.5	88	1551.5							
14	1462.3	39	1527.1	64	1553.0	89	1551.0							
15	1465.8	40	1528.8	65	1553.4	90	1550.4							
16	1469.3	41	1530.4	66	1553.7	91	1549.8							
17	1472.7	42	1532.0	67	1554.0	92	1549.2							
18	1476.0	43	1533.5	68	1554.3	93	1548.5							
19	1479.1	44	1534.9	69	1554.5	94	1547.5							
20	1482.3	45	1536.3	70	1554.7	95	1547.1							
21	1485.3	46	1537.7	71	1554.9	96	1546.3							
22	1488.2	47	1538.9	72	1555.0	97	1545.6							
23	1491.1	48	1540.2	73	1555.0	98	1544.7							
24	1493.9	49	1541.3	74	1555.1	99	1543.9							

#### 9.5 Sound Velocity in Water (St.Pres 1.01325bar)

		OUTDIAMETER		WALL THICKNESS		INNER DIAMETER		NOR OD		OUTDIAMETER		WALL THICKNESS		INNER DIAMETER	
NOR. OD	S/N	INCH	mm	INCH	mm	INCH	mm	NOR. OD	S/N	INCH	mm	INCH	mm	INCH	mm
	10S			0.049	1.245	0.307	7.798		5S			0.083	2.108	3.334	84.684
1/8	40/Std/40S 80/XS/80S	0.405	10.287	0.068	1.727 2.413	0.269	6.833 5.461		10S 40/Std/40S			0.120	3.048 5.486	3.260	82.804
	10S			0.065	1.651	0.410	10.414	3	80/XS/80S	3.500	88.900	0.300	7.620	2.900	73.660
1/4	40/Std/40S	0.540	13.716	0.088	2.235	0.364	9.246		160			0.438	11.125	2.624	66.650
	80/XS/80S			0.119	3.023	0.302	7.671		xxs			0.600	15.240	2.300	58.420
	10S			0.065	1.651	0.545	13.843		5S			0.083	2.108	3.834	97.384
3/8	40/Std/40S	0.675	17.145	0.091	2.311	0.493	12.522		10S			0.120	3.048	3.760	95.504
	80/XS/80S			0.126	3.200	0.423	10.744	3 1/2	40/Std/40S	4.000	101.600	0.226	5.740	3.548	90.119
	10S			0.083	2.108	0.674	17.120		80/XS/80S			0.318	8.077	3.364	85.446
	40/Std/40S			0.109	2.769	0.622	15.799	799 <b>5S</b>			0.083	2.108	4.334	110.084	
1/2	80/XS/80S	0.840	21.336	0.147	3.734	0.546	13.868		10S			0.120	3.048	4.260	108.204
	160			0.188	4.775	0.464	11.786	1	40/Std/40S			0.237	6.020	4.026	102.260
	xxs			0.294	7.468	0.252	6.401	4	80/XS/80S	4.500	114.300	0.337	8.560	3.826	97.180
	5S			0.065	1.651	0.920	23.368		120			0.438	11.125	3.624	92.050
	10S			0.083	2.108	0.884	22.454		160			0.531	13.487	3.438	87.325
	40/Std/40S			0.113	2.870	0.824	20.930		xxs			0.674	17.120	3.152	80.061
3/4	80/XS/80S	1.050	26.670	0.154	3.912	0.742	18.847		5S			0.109	2.769	5.345	135.763
	160			0.219	5.563	0.612	15.545		10S			0.134	3.404	5.295	134.493
	xxs			0.308	7.823	0.434	11.024		40/Std/40S		141.300	0.258	6.553	5.047	128.194
	5S			0.065	1.651	1.185	30.099	5	80/XS/80S	5.563		0.375	9.525	4.813	122.250
	10S			0.109	2.769	1.097	27.864		120			0.500	12.700	4.563	115.900
	40/Std/40S			0.133	3.378	1.049	26.645		160			0.625	15.875	4.313	109.550
1	80/XS/80S	1.315	33.401	0.179	4.547	0.957	24.308		XXS			0.750	19.050	4.063	103.200
	160			0.250	6.350	0.815	20.701		5S			0.109	2.769	6.407	162.738
	xxs			0.358	9.093	0.599	15.215		10S			0.134	3.404	6.357	161.468
	5S			0.065	1.651	1.530	38.862		40/Std/40S		168.275	0.280	7.112	6.065	154.051
	10S		42.164	0.109	2.769	1.442	36.627	6	80/XS/80S	6.625		0.432	10.973	5.761	146.329
	40/Std/40S			0.140	3.556	1.380	35.052		120			0.562	14.275	5.501	139.725
1 1/4	80/XS/80S	1.660		0.191	4.851	1.278	32.461		160			0.719	18.263	5.187	131.750
	160			0.250	6.350	1.160	29.464		xxs			0.864	21.946	4.897	124.384
	xxs			0.382	9.703	0.896	22.758		5S			0.109	2.769	8.407	213.538
	5S			0.065	1.651	1.770	44.958		10S			0.148	3.759	8.329	211.557
	10S			0.109	2.769	1.682	42.723		20			0.250	6.350	8.125	206.375
	40/Std/40S			0.145	3.683	1.610	40.894	8	30	8.625	219.075	0.277	7.036	8.071	205.003
1 1/2	80/XS/80S	1.900	48.260	0.200	5.080	1.500	38.100		40/Std/40S			0.322	8.179	7.981	202.717
	160			0.281	7.137	1.338	33.985		60			0.406	10.312	7.813	198.450
	XXS			0.400	10.160	1.100	27.940		80/XS/80S			0.500	12.700	7.625	193.675
	5S			0.065	1.651	2.245	57.023		100			0.594	15.088	7.437	188.900
	10S			0.109	2.769	2.157	54.788		120			0.719	18.263	7.187	182.550
	40/Std/40S	a		0.154	3.912	2.067	52.502	8	140	8.625	219.075	0.812	20.625	7.001	177.825
2	80/XS/80S	2.375	60.325	0.218	5.537	1.939	49.251		xxs	1		0.875	22.225	6.875	174.625
	160			0.344	8.738	1.687	42.850		160	1		0.906	23.012	6.813	173.050
	XXS			0.436	11.074	1.503	38.176		5S			0.134	3.404	10.482	266.243
	5S			0.083	2.108	2.709	68.809		105			0.165	4.191	10.420	264.668
	10S			0.120	3.048	2.635	66.929	10	20	10.750	273.050	0.250	6.350	10.250	260.350
2 1/2	80/XS/80S	2.875	73.025	0.203	7.010	2.323	59.004		30			0.307	7.798	10.192	257.454
	160			0.375	9.525	2.125	53.975		40/Std/40S			0.365	9.271	10.020	254.508
1	XXS		1	0.552	14.021	1.771	44.983		60/XS/80S	1	1	0.500	12.700	9.750	247.650

## 9.6 Pipe Schedules & Nominal Pipe Diameters – ANSI B36.10

		OUTDIAMETER		WALL THICKNESS		INNER DIAMETER			S/N	OUTDIAMETER		WALL THICKNESS		INNER DIAMETER	
NOR. OD	S/N	INCH	mm	INCH	mm	INCH	mm	NOR. OD	S/N	INCH	mm	INCH	mm	INCH	mm
	80			0.594	15.088	9.562	242.875		10			0.250	6.350	17.500	444.500
	100			0.719	18.263	9.312	236.525		20			0.312	7.925	17.376	441.350
10	120	10.750	273.050	0.844	21.438	9.062	230.175		Std			0.375	9.525	17.250	438.150
	140			1.000	25.400	8.750	222.250		30			0.438	11.125	17.124	434.950
	160			1.125	28.575	8.500	215.900		XS			0.500	12.700	17.000	431.800
	5S			0.165	4.191	12.420	315.468		40			0.562	14.275	16.876	428.650
	10S			0.180	4.572	12.390	314.706					0.625	15.875	16.750	425.450
	20			0.250	6.350	12.250	311.150	- 18		18.000	457.200	0.688	17.475	16.624	422.250
	30			0.330	8.382	12.090	307.086		60			0.750	19.050	16.500	419.100
	Std/40S			0.375	9.525	12.000	304.800		80			0.875	22.225	16.250	412.750
	XS/80S			0.500	12.700	11.750	298.450		100			1.156	29.362	15.688	398.475
12	60	12.750	323.850	0.562	14.275	11.626	295.300		120			1.375	34.925	15.250	387.350
	80			0.688	17.475	11.374	288.900		140			1.562	39.675	14.876	377.850
	100			0.844	21.438	11.062	280.975		160			1.781	45.237	14.438	366.725
	120			1.000	25.400	10.750	273.050		10			0.250	6.350	19.500	495.300
	140			1.125	28.575	10.500	266.700	-				0.312	7.925	19.376	492.150
	160			1.312	33.325	10.126	257.200		20/Std			0.375	9.525	19.250	488.950
	10			0.250	6.350	13.500	342.900					0.438	11.125	19.124	485.750
	20			0.312	7.925	13.376	339.750	20	30/XS			0.500	12.700	19.000	482.600
	30/Std			0.375	9.525	13,250	336.550					0.562	14.275	18.876	479.450
	40			0.438	11.125	13.124	333.350		40			0.594	15.088	18.812	477.825
	xs			0.500	12 700	13 000	330 200					0.625	15 875	18 750	476 250
				0.562	14.275	12.876	327.050			20.000	508.000	0.688	17.475	18.624	473.050
	60	14.000	355.600	0.594	15.088	12.812	325.425					0.750	19.050	18.500	469.900
14				0.625	15.875	12,750	323.850		60			0.812	20.625	18.376	466.750
				335.600	0.688	17.475	12.624	320.650	-				0.875	22.225	18,250
	80			0.750	19.050	12.500	317.500	1	80			1.031	26.187	17.938	455.625
				0.875	22 225	12 250	311 150		100			1 281	32 537	17 438	442 925
	100			0.938	23.825	12 124	307 950		120			1.500	38 100	17.000	431 800
	120			1 094	27 788	11 812	300.025		140			1 750	44 450	16 500	419 100
	140			1 250	31 750	11.500	292 100		160			1 969	50.013	16.062	407 975
	160			1.406	35 712	11 188	284 175		10			0.250	6 350	23 500	596 900
	10			0.250	6 350	15 500	393 700					0.200	7 925	23.376	593 750
	20			0.312	7 025	15 376	390.550		20/5+4			0.375	9.525	23.250	590 550
	20			0.072	0.505	15.070	007.050		20/310	-		0.373	3.323	20.200	507.050
	30/510			0.375	9.525	15.250	367.330					0.430	11.125	23.124	507.350
				0.438	11.125	15.124	384.150		XS	-		0.500	12.700	23.000	584.200
	40/XS			0.500	12.700	15.000	381.000		30	-		0.562	14.275	22.876	581.050
				0.562	14.275	14.876	377.850	24		24.000	609.600	0.625	15.875	22.750	577.850
				0.625	15.875	14.750	374.650		40			0.688	17.475	22.624	574.650
16	60	16.000	406.400	0.656	16.662	14.688	373.075					0.750	19.050	22.500	571.500
				0.688	1/.475	14.624	3/1.450		60			0.969	24.613	22.062	560.375
				0.750	19.050	14.500	368.300		80			1.219	30.963	21.562	547.675
	80			0.844	21.438	14.312	363.525		100			1.531	38.887	20.938	531.825
				0.875	22.225	14.250	361.950		120			1.812	46.025	20.376	517.550
	100			1.031	26.187	13.938	354.025		140			2.062	52.375	19.876	504.850 490.525
	140			1.438	36.525	13.002	333.350		10			0.312	7.925	29.376	746.150
	160			1.594	40.488	12.812	325.425	30	20	30.000	762.000	0.500	12.700	29.000	736.600
									30		1	0.625	15 875	28 750	730 250